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PREFACE

This manual is a combined tutorial and reference manual for GCOS PL/I. 
This manual is intended for a programmer who is experienced in the use of 
high-level languages, such as FORTRAN, COBOL, or ALGOL.

The sections of this manual are organized to reflect the main features of 
the language. After the introductory section, three aspects of data values are 
considered: values as abstractions, values in storage, and the conversion of 
values from one storage type to another. Next, the overall syntax of a program 
is considered, ranging from small constructs (such as the identifier) to 
intermediate constructs (the statements) to large constructs (the blocks). 
Against this background, the declaration of identifiers and the management of 
storage are described. Then, the features that are used to compute and store 
values are considered, followed by a description of the features that are used 
to determine the sequence in which program statements are executed. Finally, 
the statements for input/output are given. The manual has an appendix tnat 
gives the syntax of all of the statements of PL/I.

Two related Honeywell publications on GCOS PL/I are cited in the 
Introduction of this manual. They are the PL/I Language Manual (AG94) and the 
GCOS PL/I User’s Guide (DEOU).

1976, Honeywell Information System Inc. F ile No: IP33,1733
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SECTION I

INTRODUCTION

PL/I is a genera 1-pur pose, high-level programming language. It is designed 
for use across the entire spectrum of computer applications, including 
scientific, business, and system programming; and it is an alternative to 
FORTRAN, COBOL, or assembly language. The complete PL/I language is a large and 
complicated language that provides an experienced programmer with unusual power 
and flexibility. On the other hand, subsets of PL/I can be selected for 
specific application areas, and these subsets are easy to learn and use.

The language has a wide range of data types and data structures, and these 
allow program data to be organized in a clear and convenient way. The program 
syntax and the control statements of PL/I allow programs to be written in a 
modular, structured, and easy-to-read style.

GCOS PL/I is closely related to a draft standard that is being developed by 
the American National Standards Institute and the European Computer 
Manufacturers Association. When this manual mentions Standard PL/I, the 
reference is to the language described in the draft ECMA/TC10 - ANSI.X3J1 
Basis/1, July 197L. This manual does not specify all differences between GCOS 
PL/I and Standard PL/I.

This manual covers all of GCOS 
explained by an example, and the rules of 
that are informal but complete.

PL/I. Each feature of the language is 
the language are given in definitions

Most of this section is devoted to a general description of PL/I. The 
description begins with a listing of the main features of the language and 
continues with a consideration of the applications of PL/I. After that, the 
fundamental notions of program validity and correctness are defined. Finally, 
several publications that are useful in the study of PL/I are cited.

THE MAIN FEATURES OF PL/I

PL/I brings together in a single language some of the most successful 
features of earlier programming languages. The design of the language was a 
major undertaking; it took nearly ten years and involved many separate groups 
and committees. The final result is a consensus rather than a unified approach 
to programming. The strength of the language is in the great variety of its 
features; its weakness is in the relation of these features to one another. A 
description of the main features of the language follows.
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Data Descr i pti on

In PL/I, a variable is described in terms of the set of values it can 
accommodate rather than in terms of the hardware storage it occupies. Consider 
the following declarations:

DCL X FIXED DECIMAK 7, 2) ;
DCL Y CHARACTERS) ;
DCL Z BIT(36) VARYING;

Each of the three variables just declared occupies two words of GCOS memory; 
therefore, from the point of view of the hardware, the variables are very 
similar. However, from the point of view of PL/I, each variable is entirely 
different from the others. The storage designated by X accommodates a 
fixed-point number with seven decimal digits, two of which occur after the 
decimal point. The storage designated by Y accommodates a string of eight ASCII 
characters. The storage designated by Z accommodates a varying length string, 
with a maximum length of 36 bits.

The handling of data storage in the manner just described is fundamental to 
the nature of high-level languages. It makes programs less hardware dependent. 
In addition, it allows the compiler to detect some errors in a program (such as 
an attempt to take the square root of a program address) and to supply 
conversions where they are required (as in the assignment of a fixed-point value 
to a floating-point variable). The more information the data descriptions give, 
the more efficiently a compiler can manipulate the data.

PL/I is unusual because of the large number of different storage types that 
are available in the language. A variable can be declared in any of the 
fol lowing ways:

An ar i thmeti c variable can be declared to accommodate a number with 
fixed-point or floating-point scale and binary or decimal base. The 
length of the number can range from one digit to many digits, and the 
binary point or decimal point can be positioned anywhere in the 
number. The number can be complex for use in scientific programming. 
Therefore, virtually all important representations for numbers are 
available, and a programmer can choose the representation that exactly 
suits his needs.

A string variable can be declared to accommodate a sequence of ASCII 
characters or a sequence of bits. It can be stored as a compact, 
fixed-length string or a more flexible varying-1 ength string.

A pi ctu red variable can be used to accommodate a value that can be 
interpreted either as a number or a character string, as circumstances 
require. The use of such variables can greatly simplify the 
formatting of input/output.

An address variable or an area variable can be used in performing 
operations that formerly could be performed only in assembly language.

An array variable can be declared to accommodate a sequence of smaller 
variables, all of the same type, that are designated by subscripts.

A s tructure variable can be declared to accommodate a sequence of 
smaller variables that are not necessarily of the same type and that 
are designated by subnames.
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Each different kind of data is called a s to r age type. The large number of 
storage types in PL/l is the main cause of the size of the language. For each 
storage type, both the range of values and the representation of values must be 
defined. For arithmetic and string values, the representation of each value as 
a character sequence must be defined, so that the value can be read in, printed 
out, or used as a constant in a program. Rules for conversion must be given for 
any pair of storage types between which conversion is reasonable. The operators 
and built-in functions must be defined to operate on many storage types 
directly, without a preliminary conversion of operands.

A programmer who is learning PL/l needs a casual acquaintance with the full 
range of storage types. Once the programmer begins to write a specific program, 
however, he can concentrate on the storage types required by the program. For 
example, a program can be written that reads in some numbers, performs some 
computations, and then prints out numbers; such a program requires only 
arithmetic storage types. Later, a second version might be written that 
produces output suitable for immediate publication; this version would require 
character string variables as well as numbers. Still later, the program might 
be converted to operate on a permanent data base, and address variables and area 
variables would be useful. An advantage of PL/l is that a program can become 
more complicated without outgrowing the language.

Program Structure

A PL/l program is a set of one or more external procedures. Each external 
procedure is compiled separately; nevertheless, any variable can be shared 
between all the external procedures of a program by declaring it EXTERNAL. This 
arrangement makes it practical to develop a large program as a collection of 
separate modules; then, when development is complete, the modules can be used 
toge the r.

Each external procedure can contain internal procedu res. Internal 
procedures can be nested, so that a given procedure can be programmed in terms 
of smaller procedures. Each procedure can have its own variables, so that the 
data as well as the program can be structured by means of nested procedures. 
This feature of PL/l makes it suitable for top-down program design.

Storage management is closely related to the procedure structure of a 
program. In most applications, storage management requires little attention 
from the programmer. When storage management is not specified for a variable, 
the variable is automatically allocated and freed as control enters and leaves 
the procedure in which it is declared. Occasionally it is necessary to declare 
a variable STATIC so that it will remain throughout program execution. Advanced 
features for storage management are available for use where programmed storage 
management is necessary.
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Compu ta t i on

The computational power of PL/I is provided by the more than one hundred 
built-in operations of the language. Each operation is designated either by an 
operator, such as + , or a built-in function name, such as LOG. The operations 
a re:

The ar i thme t i c operations, which include the basic arithmetic 
operators, the relational operators, and built-in functions for 
comparison, truncation, sign-manipu1 ation, and complex arithmetic

The ma thema t i ca1 operations, which are built-in functions. for 
exponentiation, logarithms, trigonometry, and statistical analysis

The string operations, which include operations for putting strings 
together, taking them apart, comparing them, searching them, and 
ordering them

The address and area operations, which are used 
of storage management and list processing

The array operations, which are 
array variables

especially for

The conver s i on operations, which can be used to 
conversion between storage types

for advanced methods

the manipulation of

perform any reasonable

The spec i a 1 operations, 
interrupt handling, and

which are used for details of input/output, 
the determination of the time and date.

The interpretation of an operation depends on the storage types of its 
operands; for example, the + operator is interpreted in one way for fixed-point 
decimal operands, in a very different way for complex floating-point operands, 
and in yet another way for array operands. It is a fundamental principle of 
PL/I that if there is a reasonable interpretation for an operator with given 
operands, then the operator is defined for those operands. Thus in PL/I, as in 
mathematics, a single operator can have many meanings.

The computation of a value is specified by an express i on. Another 
fundamental principle of PL/I is that an expression can be used wherever a 
variable could be used to produce a value. Thus an expression can be used to 
specify the number of elements in an array, the increment of a DO loop, or an 
output value.

Sequenc i ng

Generally, the statements of a program are executed in the order in which 
they appear; however, this sequence can be modified by f1ow-of-contro1 
statements, by procedure invocation, or by the occurrence of conditions. Each 
of these methods for modifying the sequence of execution is considered briefly 
here.

There are three statements for flow of control. The IF statement causes 
conditional execution of a statement or a group of statements; the syntax of the 
statement allows the logic of a program to be laid out in a clear and readable 
way. The DO statement causes the repeated execution of a group of statements; 
three different methods are provided for the control of the repetition. The 
GOTO statement causes unconditional transfer of control.
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There are two methods for procedure invocation. A procedure can be invoked 
by a CALL statement or a function reference. The latter case is of great 
importance, because it allows a procedure to be called in the midst of the 
evaluation of an expression and to return a result that is used in the 
evaluation of the expression.

PL/I has facilities for handling exceptional conditions. Examples of 
conditions are division by zero, reading of an end-of-file, and use of an array 
subscript that is out of range. In most cases, condition handling can be left 
to the built-in mechanisms of PL/I. However, condition handling can be 
programmed when necessary; for example, a program can be supplied for execution 
when an end-of-file for a file is read. Furthermore, conditions can be disabled 
to reduce cost; for example, the subscript range condition can be enabled during 
debugging of a program but disabled for production.

Inpu t/Ou tpu t

There are two separate facilities for input/output in PL/I, stream and 
recor d input/output. Each is surrounded by its own special purpose features, so 
the language has many operations in this area.

The facilities for stream input/output are based largely on those of 
FORTRAN. Stream input/output is intended for dealing with hard copy, such as 
cards, listings, and print-outs, rather than permanent storage. Statements with 
the LIST option can be used for input/output with a minimum programming effort. 
Statements with the EDIT option can be used to lay out and label values in an 
elaborate way on the pages of a print-out.

The facilities for record input/output are based largely on those of COBOL. 
Record input/output is used primarily for communication with permanent storage. 
The statements for record input/output are much simpler than those for stream 
input/output, and they depend on such related language features as pictured 
var i ab1es.

APPLICATIONS OF PL/ I

The use of PL/I in the three major application areas, scientific, business, 
and system programming is considered here.

Scientific Programming

Many of the features of PL/I are derived from two earlier languages for 
scientific programming, FORTRAN and ALGOL; in fact, the development of PL/I 
began with an effort to develop a new version of FORTRAN. Therefore, many of 
the features of PL/I may be familiar to the programmer with a background in 
scientific programming.
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Most scientific programs can be written using a small subset of PL/I. Such 
programs are more readable and compact than the cor responding FORTRAN programs 
would be; and, in GCOS, they are compiled into programs of comparable 
efficiency. The following guidelines specify a scientific subset of PL/I:

1.

2 .

3.

Data. Use only the following data types for variables:

FIXED BINARY(n)
FLOAT BlNARY(n)
COMPLEX FLOAT BINARY(n)
CHARACTER(n)
B I T(1)

This eliminates a large part of the 
fractional fixed-point numbers, picture 
non-computationa1 variables.

anguage; decimal numbers, 
variables, and all of the

Aggregates. Use arrays but not structures. This eliminates the 
declaration and resolution of structure names.

Storage Management. Use only the following storage classes:

AUTOMATIC
STATIC
PARAMETER

Since the PARAMETER attribute takes care of itself, the choice is 
really the simple one between the default AUTOMATIC and the 
occasionally useful STATIC. This eliminates all programmed storage 
managemen t.

Expressions. Use only scalar expressions, and use only simple or 
subscripted references. This eliminates many unfamiliar features of 
PL/ I .

Operations. Use only the following operations:

arithmetic operations 
mathematical operations 
array operat i ons

This eliminates more than half of the

Cond i t i on Hand 1i ng. Allow conditions 
for. the ENDFILE condition. This
s tatemen t.

operat ions.

to be handled by default except 
eliminates most uses of the ON

Inpu t/Ou tpu t. Use stream input/output for most input/output. Use the 
LIST option for easy programming or the EDIT option when the format 
and layout is elaborate. Use record input/output only for permanent 
storage of large arrays as GCOS files.

The subset of PL/I just described is a language not much larger than FORTRAN IV. 
The advantage of PL/I is that a particular application program can grow in 
complexity without exceeding the limits of the full PL/I language. If features 
not included in the subset are needed for increasing the efficiency, reliability 
or capacity of a program, the necessary features are available as part of full 
PL/ I .
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Business Programming

PL/I is very different from COBOL, especially in its program structure, 
computational forms, flow of control, and procedure invocation. Furthermore, 
certain facilities of COBOL have no counterpart in PL/I; for example, the SORT 
and MERGE verbs and the report writer. Therefore, PL/I is not easily accepted 
as a programming language for business applications.

Nevertheless, PL/I was designed to accommodate business programming. It 
includes generalizations of some of the most successful language features of 
COBOL, notably picture clauses, structured records, and record input/output. 
Furthermore, many of its facilities, unfamiliar though they may be, are 
well-suited to data processing. The success of the method of programming called 
s tructured programmi ng has given new impetus to the use of PL/I for business 
programming because PL/I is well-suited for structured programming and COBOL is 
not.

Many of
The following

the features of PL/I are not required for business programming, 
guidelines specify a business subset of PL/I:

1. Da fa. Use only the following data types for variables:

FIXED DEC IMAL(m,n)
CHARACTER(n) VARYING
CHARACTER(n) NONVARYING
Bl T(1)
PI CTURE"jds”

This eliminates complex, floating, and binary numbers and all of the 
non-computationa1 variables.

2. Aggregates. Use both arrays and structures.

3. Storage Management. Use only the following storage classes:

AUTOMAT IC
STATIC
PARAMETER

Since the PARAMETER attribute takes care of itself, the choice is 
really the simple one between the default AUTOMATIC and the 
occasionally useful STATIC. This eliminates all programmed storage 
managemen t.

4. Opera t ions. Use only the following operations:

arithmetic operations
concatenation operator and substring functions
system counter functions

The arithmetic operations alone are sufficient except where the 
manipulation of text is necessary.

5. Condition Handling. Allow conditions to be handled by default except 
for the following;

ENDFILE
ENDPAGE
KEY
UNDEFINEDFILE

This eliminates most uses of the ON statement.

1-7 DEO5



6. Inpu t/Qu tpu t. Use record input/output for all input/output. 
eliminates the complicated facilities for stream input/output.

Thi s

This subset is intended to be a guide for the study of PL/I. It is not intended 
to restrict the use of PL/I; for example, if a programmer already is familiar 
with stream input/output he should certainly use it where it is convenient.

System Programming

The most impressive application of PL/I is system programming. PL/I is the 
only widely available language that permits efficient system programming in a 
high-level language context. An example of the use of PL/I as a system 
programming language is close at hand: the GCOS PL/I compiler is written in PL/I 
and GMAP. ——----------------- - -------

In the following paragraphs,
system programming are described.

the features of PL/I that are important for

DATA

Any data structure can be described by an appropriate PL/I variable. A 
table of data can thus be laid out in a natural and convenient way. The packing 
of data within a table is completely under the control of the programmer; 
consequently, he is able to define any pattern of bits. He is able to control 
the size of critical data bases, and can describe such system-dependent data as 
page tables, interrupt vectors, input/output channel control words, or machine 
instructions in object programs.

PL/I based var i ab1es are valuable in system programming. They provide the 
programmer with a completely dynamic storage allocation, a powerful form of list 
processing, and a mechanism for accessing a data base that occupies any given 
storage location. Through the use of explicitly allocated based structure 
variables, the PL/I programmer can dynamically create lists, rings, trees, 
directed graphs, and so on, whose component nodes are based structure variables 
containing pointers to other nodes.

PROGRAM STRUCTURE

The structure of a PL/I program closely parallels the modular structure of 
large systems. A PL/I program can consist of several external procedures that 
call each other, communicating information through argument lists and external 
variables. An external variable is declared within each procedure that wishes 
to use it, and all such declarations are equivalent. The variable exists within 
the address space of the program but is not owned by any procedure of the 
program.

The system designer can precisely define a module’s interface by actually 
writing PL/I declarations of external variables and procedure entries. By 
appropriate use of libraries of these declarations and the % INCLUDE macro, the 
project managers can insure that all the modules use the same declarations of 
the ir shared data.
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EFFI ClENCY

The GCOS PL/I compiler was designed to compile PL/I programs into efficient 
code. In nearly all cases, storage types can be determined by the compiler. 
Therefore, most references, conversions, and operations can be compiled as 
optimized in-line code with very little run-time testing.

The handling of string data is a good example of a language feature that is 
designed for efficient imp1 ementaion. A PL/I character string value is a 
sequence of characters whose length is unlimited and is determined during 
program execution. In contrast, a string va r i ab1e is allocated with a fixed 
length. The language must reconcile this difference, and the use of string data 
is somewhat more difficult than it would be if string variables had unlimited 
length. However, the PL/I treatment of character strings allows the compiler to 
produce efficient, non-interpretive object code for operations on character 
st r i ngs.

The storage management mechanisms of the language can be implemented 
efficiently. Static storage can be allocated before execution. Au toma t i c 
storage requires a stack, which can be implemented by means of a base register 
at minimal cost. Based storage requires a pair of space management routines 
that are used when the program calls for allocation or freeing of storage; these 
routines can avoid garbage collection by using threaded lists to keep track of 
s tor age.

The parameter passing mechanism of PL/I was designed to permit compilation 
of reasonably efficient object code. The calling program always has a 
declaration of the parameters of the called procedure, even when the called 
procedure is in a separately compiled part of the program. Therefore arguments 
can be passed to parameters without any interpretive code.

PROGRAM VALIDITY

The fundamental question of PL/I programming is whether a given character 
sequence is a valid program. A valid program is one which makes sense according 
to the definition of PL/I. A program is invalid if the definition of PL/I does 
not define the result of executing the program. Validity has little to to with 
whether or not a program does what the programmer wants it to do. A valid 
program can certainly yield incorrect results; and, sometimes, an invalid 
program can yield correct results.

Examples of Invalid Programs

The simplest case of an invalid program occurs when the rules of syntax are 
violated. Consider the following example:

P: PROC;
DCL SYSPRINT FlLE;
PUT LI ST(’’HELLO” )
END;

This example is not a valid program because the statement on the third line does 
not end with a semicolon.
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Most of the syntactic rules of PL/I are easy to learn; in fact, a knowledge 
of syntax comes automatically from reading examples of valid programs. 
Furthermore, when a question of syntax does arise, it can be answered in a 
formal and almost mechanical way by the syntactic formulae that appear in the 
PL/I Language Manual.

It is possible for a sequence of characters to 
program but not a semanti ca11y valid program, 
syntactically valid program:

be a syntacti cal 1y valid 
Consider, for example, the

n• prop*
DCL SYSPRlNT FILE;
DCL X FLOAT;
PUT LIST(X**3);
END;

In this program, the variable designated by X is not set (assigned a value) 
before it is used (evaluated). The definition of PL/I says that the value of a 
variable is undefined until it is set, either by explicit initialization, or by 
assignment. Therefore the value output by the PUT statement is not defined and 
it follows that the program is not valid.

The rules of PL/I could have been designed so that any syntactically valid 
program would be completely valid. The undefined cases are not oversights; 
they were deliberately included to allow more efficient and reasonable 
interpretation of programs. Consider the example just given, the program Q. If 
PL/I initialized all variables (say to zero), then X would have a value,when it 
was used in the PUT statement and the program Q would be valid. But in most 
cases, when a variable is used before it is set, the program is i ncorrect, 
regardless of whether the definition makes it valid or not. Thus automatic 
initialization would be a wasted operation. Certainly the example program seems 
to be incorrect, because a program that always prints the same value (such as 
zero) is not useful.

A program can be invalid when it is used with improper input, 
for example, the following syntactically valid program:

Cons i der,

R• PROC *
DCL (SYS IN,SYSPRINT) FI LE;
DCL X FIXED DEC(3);
GET LIST(X);
PUT LIST(X**2);

.END;

This program is invalid unless it is used with input values whose magnitudes are 
less than 1000. If a larger value is supplied as input, then the value will not 
fit in storage and the value of X is not defined.

Observe, once again, that PL/I could have been designed so that the program 
just given would always be valid. The size of every value assigned to a 
variable could be checked before assignment, and a specific action could be 
taken if the value was too large. However, such a check would be costly; and 
since most assignments are made within a program where values can be controlled, 
it would be wasteful. Instead of checking every value, PL/I allows the 
programmer to explicitly call for a check where it is needed. The example just 
given can be made valid for all Input values as follows:

R • PROC•
DCL (SYS IN,SYSPRI NT)
DCL X FIXED DEC(3);

(SIZE): GET LIST(X);
PUT LIST(X**2);
END;
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The SIZE condition prefix on the input statement causes the value assigned to X 
by that statement to be checked. If the value is too large, the system prints 
an error message and aborts the program, and this is a well-defined action.

The program 
the action is 
i mproper input:

just gi ven 
drastic.

takes a well-defined action for improper input, but 
The following program is designed to recover from

R: PROC;
DCL (SYS IN,SYS PR I NT) FILE;
DCL X FIXED DEC(3);
DCL SIZE COND;
ON SIZE

BEGIN;
PUT LI STC’TRY AGAIN; ") ;
PUT SKIP;
GOTO L;
END;

(SIZE):
L: GET LIST(X);

PUT LIST(X**2);
END;

This program responds to improper input 
specifically, it prints "TRY AGAIN: ” and

by performing a programmed action;
calls for a new input value.

Each of the three versions of the program R are useful under appropriate 
circumstances. If the programmer can be sure that improper input will not be 
used, the first version is best because it does not entail the extra cost of the 
size check. If the programmer considers improper input to be a rare and 
unimportant occurrence, then the second version is best because it is safe but 
simple. If the programmer considers improper input to be a normal occurrence in 
the use of the program, the last version is best because it recovers.

The Interpretation of Invalid Programs

The interpretation of an invalid program is not defined for PL/I; however, 
someth i ng happens when an invalid program is compiled and executed. The 
following cases apply:

A program that is syntactically invalid is usually detected by the 
compiler. The compiler prints a diagnostic message and usually 
declines to produce the object segment.

Programs that are invalid for non-syntactic reasons are often not 
detected by the PL/I system, because the cost of checking for such 
invalid programs is too great. For example, when a variable is used 
before it is set, some particular value is used; and unless the value 
happens to make something go wrong elsewhere, program execution 
proceeds.

The detection of constructs that are invalid for non-syntactic reasons is a 
major part of the debugging of a program.
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SUGGESTIONS FOR THE STUDY OF PL/I

The following paragraphs describe various publications that are designed 
for the study of PL/I. The description begins with a list of three introductory 
texts, continues with remarks on this manual, and concludes with notes on 
related Honeywell publications.

Introductory Texts

An introductory text on PL/I 
study. Three useful texts are:

prov i des examples and a framework for fur ther

1. PL/I Prog r amm i n g Primer, by Gerald M. Weinberg, McGraw Hill, 278 
pages. This short book provides a smooth and efficient introduction 
to PL/I. It keeps strictly to the subject of elementary PL/I, and can 
be read in a short time. The use of a single programming problem 
throughout most of the book provides continuity; and the example 
program can later be run as a GCOS PL/I program.

2. PL/I for Scientific Programmers, by C. T. Fike, Prentice-Ha11, 241
pages. This book is recommended for the experienced FORTRAN
programmer. Most chapters end with a section called "PL/I and 
FORTRAN” and thus emphasize the relationship between the two
languages. The book is organized according to the features of the 
language rather than having a narrative form; therefore, it cannot be 
read as quickly as Weinberg's book.

An Introduction to Programming, by Richard Conway and David Gries, 
Winthrop Publishers, Cambridge, Massachusetts, 460 pages. This book 
is a complete course in high-level programming that is based on PL/I. 
It is too long for a quick reading, but it provides good background 
reading because its examples are all in PL/I. Included are 
discussions of top-down program development, confirmation of program 
correctness, recursive programming, scientific programming, and file 
process i ng.

There are many other introductory texts for PL/I, but most of them have the 
disadvantage that they go into details of specific computer hardware and 
specific operating systems, topics that do not contribute to the study of GCOS 
PL/ I .

The PL/I Reference Manual

The study of PL/I should 
object of this examination 
features of GCOS PL/I and the

continue with an examination of this manual. The 
should be to become familiar with the general 

way these features are described in this manual.

A variety of techniques are used in this manual to assist the reader in 
understanding PL/I and writing efficient programs. Examples are given in 
abundance and are often designed to cover all possible cases of a feature. 
Principles of design of PL/I are given to provide a framework for the details of 
the language. Guidelines for efficient and clear programming are given when, as 
is often the case, the language allows more than one way of programming a 
particular operation. Finally, repetition is freely used to avoid the use of 
cross references and to emphasize the features of the language that are most 
i mpor tan t.
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THE ROLE OF EXAMPLES IN THIS MANUAL

Many of the examples in this manual are complete programs. The use of 
complete programs has several advantages. First, such examples provide a guide 
for the details of programming style by showing how programs should be laid out 
for readability, how abbreviations should be used, and, generally, how 
statements should be put together to form a program. Further, an example that 
is a complete program does not require a discussion of the context of the 
example; it is, by definition, complete. Finally, the complete example programs 
can be used by the reader to experiment with the execution of PL/I programs in 
the GCOS environment.

However, most of the examples are not realistic applications of PL/I. A 
realistic PL/I program, even a small one, requires several pages of background 
and explanation, and such a discussion is beyond the scope of this manual. The 
examples in this manual are designed to show how certain statements are 
executed, not how they should be used to solve problems. Sometimes the absence 
of realism is obvious, as with an example program that does nothing but read two 
numbers and print out their sum. In other cases, the examples are complicated; 
nevertheless, these examples are usually contrived in order to illustrate an 
important feature of PL/I rather than to solve a real problem.

THE ROLE OF GUIDELINES IN THIS MANUAL

PL/I provides many ways to program the solution of any given problem. 
Usually it is not sufficient to write a program that produces the correct 
results; in addition, the program must be reasonably efficient and fairly 
reasonable. The guidelines given in this manual are designed to assist 
programmers in choosing among the many options offered in PL/I. When a reader 
has guidelines that are better for his own purposes than those given in this 
manual, he should ignore those given here.

In some places in this manual, guidelines are given under a special 
heading, such as ’’Guidelines for Arithmetic Data Types”; in other places, 
guidelines are mentioned as part of the definition of a feature. Usually, a 
guideline is distinguished by the use of the word ’’should” instead of ’’must”; 
for example, "when a storage unit is used for an exact integer, it should be 
FIXED BINARY.”

THE ORGANIZATION OF THIS MANUAL

The manual can serve both as an advanced tutorial and an informal 
reference. The sections are organized to reflect the main features of the 
language. After the introductory section, three aspects of data values are 
considered: values as abstractions, values in storage, and the conversion of 
values from one storage type to another. The sections that cover this material 
are:

Vaiu e s
Value Storage
Value Conversion
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Next, the overall syntax of a program is considered, ranging from small 
constructs (such as the identifier) to intermediate constructs (the statements) 
to large constructs (the blocks). Against this background, the declaration of 
identifiers and the management of storage is described. The sections are:

V.
VI .
VII.

Program Syntax
Decl arat i ons
Storage Management

Next, the features 
The sect ions are:

that are used to compute and store values are considered.

VIII. Expressions
IX. Operations
X. Value Assignment

Next, the features that are used to determine the sequence 
statements are executed are described. The sections are:

in which program

XI. P rog ram F1ow
XII. Procedure Invocation
XIII. Condition Handling

Next, the statements for input/output are described. The sections are:

XIV. Stream Input/Output
XV. Record Input/Output

The manual has an appendix that gives the syntax of all 
PL/I, except the DEFAULT statement.

of the statements of

Related Manuals

Additional information on the writing and execution of GCOS PL/I 
is available in the following Honeywell publications;

p rog rams

The PL/I Language Manual (Order Number AG94) is a semi-formal 
definition of Multics PL/I . Since Multics PL/I and GCOS PL/I are 
essentially the same, this manual can be used to obtain answers to 
specific questions about the syntax of the language.

The GCOS PL/j User's Guide (Order Number DE04) describes running PL/I 
programs in the GCOS environment. It is intended to provide 
sufficient information about control cards, file attachment, and 
system interfaces for the compilation and execution of PL/I programs.

The PL/I Language Manual is the ultimate authority on Honeywell PL/I. For the 
programmer who is beginning a study of PL/I, the manual may be difficult to use 
and understand because it is designed to be a definition, not an explanation, of 
PL/I. To the programmer who has learned Honeywell PL/I, however, the Language 
Manual is the source of all necessary information about Honeywell PL/I.
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The PL/I Language Manual describes the meaning of any given program, but it 
does not explain how to write a program. Therefore, it is essential to approach 
the manual with a we 11-formu1 a ted question, a question that is usually in the 
form "what does the following PL/I construct mean: ...?" If it is impossible to 
come up with such a question, then the appropriate section of this manual should 
be used to get the rules, examples, or guidelines necessary to formulate a 
question.
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SECTION I I

VALUES

The most important feature of PL/I is the great variety of the values that 
are provided. When a PL/I program performs a calculation, whether business or 
scientific, it does so in terms of ar i thmet i c values. When a program accepts 
input from the user or prints out a listing of results, it transmits s t ring 
values. When a program refers to the storage for its own data or to the code 
for its own statements, it uses add res s values. When a program needs to control 
storage management, it uses an area value. And when a program needs to treat 
several values as a single entity, it groups the values into an aggregate value.

In this section, each kind of value is described and the operations that 
can be applied to the value are summarized. The values are described in an 
abstract way, without consideration of the way in which they are stored in 
memory. The purpose of this section is to indicate the computational power of 
PL/ I .

ARITHMETIC VALUES

Standard PL/I does not specify the range of the arithmetic values; instead, 
it leaves this choice to each implementation of PL/I. Naturally, a useful 
implementation must provide for a reasonably large set of values. The range 
provided by GCOS PL/I is very large indeed, and is as follows:

• The gr ea tes t magn i tude of a GCOS PL/I value is ( 10**186 - 10**12 7).
This value is expressed as a decimal number by writing 59 9 digits 
followed by 127 0 digits. The number would occupy about three lines 
of uninterrupted decimal digits; and its value far exceeds any 
measurement encountered in business or scientific applications.

The sma1 lest magn itude of a value is (10**-128). This value is 
expressed as a decimal number by writing a decimal point followed by 
127 0 digits followed by a 1. Again, this number would occupy several 
lines and its magnitude is much smaller than any measurement 
encountered in practice.

The p r e c i s i o n of arithmetic values is such that two values can differ 
by as little as one part in 10**59. This is the same as saying that a 
value can be expressed as an exact 59-digit decimal number followed by 
a suitable scale factor. Thus PL/I can supply a very good 
approximation to any given number.

The arithmetic values Just described are cal 
the only ones used in business applications. 
Each complex value is composed of a pair of 
complex values is determined by the range 
are used only in scientific applications.

led rea1 values, and real values are 
PL/I also supplies compl ex values.

real values, and thus the range of 
of the real values. Complex values
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A number can be expressed exactly as a PL/I arithmetic value only if it can 
be expressed exactly in decimal positional notation. For example, 73/2 can be 
expressed exactly as 36.5 and 13/320 can be expressed exactly as 0.040621875; 
so these are PL/I arithmetic values. On the other hand 1/3 and the square root 
of two cannot be expressed exactly this way, and so must be approximated. If a 
good approximation is acceptable, then GCOS PL/I can provide that approximation; 
otherwise, special techniques must be applied.

PL/I has many operations for the manipulation of arithmetic values. The 
familiar arithmetic operators are present; in addition, several dozen built-in 
functions for integer arithmetic, trigonometry, logarithms, and statistics are 
prov i ded.

STRING VALUES

A str i ng value is a sequence of characters. Standard PL/I does not specify 
the set of characters that can appear in a string; instead, the choice of 
characters is left to each implementation of PL/I. The character set used in 
GCOS PL/I is the ASCII character set, given under "The COLLATE Function” in the 
section on "Operations". It is composed of 128 characters, as follows:

52 characters that 
and upper case

represent the letters of the alphabet in both lower

10 characters that represent the decimal digits

18 characters that represent most of the special symbols on a 
typewriter keyboard

14 characters that represent special symbols not found on an ordinary 
typewriter keyboard, many of which are useful in writing mathematical 
expressions or non-English text

1 character for the blank

33 characters that are nonprinting control characters including, for 
example, horizontal tab, new line, new page, and carriage return

Because this character set includes characters that control the layout of the 
pages, a printed document of many pages can be composed, stored, and edited as a 
single PL/I character string value.

The number of characters in a character string value is the 1ength 
value. The maximum length allowed in GCOS is 256K.

of the

Several operators and built-in functions are provided for the manipulation 
of string values. String values can be concatenated and a substring of a given 
string value can be extracted. The equality operators (’=’ and ,A=’) can be 
applied to strings. A collating sequence orders the character set, so it is 
possible to apply inequality operators (such as ’<’) to strings. Other 
functions are available for use in such advanced applications as command 
interpretation and compiler construction.
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A special kind of string value is recognized; namely, a string value 
composed only of the bits 0 and 1. Such a string value is a bit-string value. 
When a bit-string value contains a single bit, it is a Boolean value; and it 
represents ’’true” or ’’false” depending on whether the single bit is 1 or 0. By 
extension, a bit-string value of length greater than one can be treated as a 
sequence of true/false indicators. The familiar Boolean operators are provided 
for use with the bit-string values.

Any arithmetic value can be converted to a string value; the result is a 
conventional representation of the arithmetic value. Conversely, a string can 
be converted to an arithmetic value, but only if the string value is a valid 
represen tation of an arithmetic value. These conversions are essential because 
a value must be expressed as an arithmetic value if an arithmetic operation is 
applied to it, but must be expressed as a string value before it can appear in 
the output stream. In addition to providing functions that perform these 
conversions in a straightforward way, PL/I has pictured character-string 
variables, which allow numeric values to be maintained as character-string 
values in an automatic and convenient way.

ADDRESS VALUES

Every PL/I statement in a program has a unique address, and every data 
storage unit also has a unique address. It is common in computing to think of 
an address as an integer and thus endow it with arithmetic properties; but as a 
value in PL/I, an address has no other property than its association with a 
particular program statement or storage unit. For example, the "next” address 
is not defined for any address, so addresses are not even ordered.

The manipulation of address values in PL/I is deliberately limited. An 
address value can be assigned to a variable and can be produced by a reference 
to a constant, a variable or a function. The operators ’=’ and ’ =’ can be used 
to determine whether or not two address values are identical. The only 
conversion that can be applied to address values is that between a pointer value 
and an offset value.

There are three kinds of address values: statement, 
values; and descriptions of these follow.

1 oca tor, and file

Statement Values

A s ta ternent value designates a statement in 
classified as a 1abel, entry, or format value according

a program. The value is 
to the following rules:

A 1abe1 value designates a statement to which control can be 
transferred by a GOTO statement. Any statement except a PROCEDURE, 
ENTRY, or FORMAT statement can be designated by a label value.

An entry value designates a statement to which control can be 
transferred by a CALL statement or a function reference. There are 
two such statements, the PROCEDURE statement and the ENTRY statement.

A format value designates a statement that can supply a format list to 
a stream input/output statement. There is one such statement, the 
FORMAT statement.
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Locator Values

A locator value designates a storage unit for program data. There are two 
types of locator values, as follows:

A pointer value is used by itself to access a storage unit.

An offset value is used in conjunction with an area name to access a
s tor age unit.

The pointer value is similar to the absolute ma ch i ne add r es s used in assembly 
language programming, and the offset value is similar to a relative or bas ed 
machi ne address. Conversion between a pointer value and an offset value can be 
performed relative to a given area value.

File Values

In GCOS PL/I, a file value designates a collection of stored values called 
a f i1e-state block. The values in the file-state block record the status of a 
data set that is currently being used for input/output. The file value is a 
more specialized kind of address value than either the program address value or 
the locator value.

AREA VALUES

An area value is an ordered set of PL/I values. The entire set of values 
can be assigned to an area variable, passed as a procedure argument, returned as 
a procedure result, or transmitted as input or output. However, the principal 
use of an area value is as part of a specialized mechanism for the efficient 
management of storage. The most important operations on an area are the 
allocation and freeing of storage for new values within the area. However, the 
details of these operations are not relevant to this description of values. The 
area value plays a role in the definition of the OFFSET value, already mentioned 
under ’’Locator Values”.

AGGREGATE VALUES

An aggrega te value is an ordered set of PL/I values. Because it is a set 
of values, it provides a way of handling a collection of values as a single 
computational entity. Because it is o r de red, it has a f i r s t compo nen t, a s e.QQ.nd. 
componen t, and so on. And because it can contain any PL/I values, it can have 
another aggregate as a component. Thus an aggregate value can be used to 
collect values together and arrange them in a hierarchical manner, with 
aggregates within aggregates.

There are two kinds of aggregate, the a rray and the structure. An array 
must contain values that are all of the same kind, whereas a structure is not 
restricted in this way. Aside from this, the two kinds of aggregate differ in 
the way they are stored and referenced.
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Most of the operations of PL/I can be applied to aggregate values. Each 
operation is not individually redefined for this purpose; instead, a general 
rule is applied: the j_th component of the result of the operation is produced by 
applying the operation to the _i_th component of each of the given operands. Thus 
the aggregate operation is defined in terms of the conventional, non-aggregate, 
operation.

THE CLASSIFICATION OF VALUES

The previous paragraphs have traced a progression from the mathematical 
values of computation to the specialized values required for efficient 
programming. The a r i t hmet i c values are those universally accepted for use in 
calculation. The s t r i ng values are used for objects of universal importance 
(printed pages); but their precise and restricted definition is characteristic 
of computer programming rather than conventional usage. The address values are 
meaningful only in relation to the program statements or stored data, and so are 
creatures of computer programming. The area values represent a further descent 
into the special techniques of efficient programming. The aggregate values 
appear to swing back toward the world of mathematics; but their usage is 
oriented toward programming rather than mathematics.

The following list is a hierarchy for the PL/I values described in this 
section. Some useful supplementary terminology has been introduced.

sea 1 ar: any PL/I value that is not an aggregate 
compu ta t i ona1: a value of interest beyond programming 

a r i t hme t ic: a number 
s t r i ng: a sequence of ASCII characters

cha racter s t r j ng: an unrestricted string
bit s t r i ng: a string of zero’s and one’s 
pictured character-string: a specially restricted string 

non-computationa1: a value of interest only for programming 
address: a value that designates a statement or a storage unit

s ta temen t: the address of a statement 
label: the destination of a transfer 
entry: a PROCEDURE or ENTRY statement 
format: a FORMAT statement 

data: the address of data 
locator: the address of storage for a value 

po i nte.r : an ’’absolute” address 
offset: a "relative” address based in an area 

f i 1 e: the address of a file-state block 
area: values gathered together by storage management 

aggregate: an ordered set of values
a r ray: components must have the same data type 
structure: components may differ in data type
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SECTION I I I

VALUE STORAGE

The notion of values in the abstract, as described in the preceding 
section, is the link between the computing requirements of the outside world and 
the specialized technology of computers. In contrast, the notion of values i n 
s tor age, as described in this section, is dependent on features of computers 
that have no relevance to the outside world except for their contribution to 
efficient, low-cost computing. Binary numbers, normalized floating-point 
values, limited character sets, and rigid limitations on precision are features 
of computer hardware that do not have counterparts in the conventional methods 
of penci1-and-paper computing.

A principal objective of the designers of PL/I was to provide a language in 
which efficient use of the computer hardware was possible. Therefore, PL/I 
allows a programmer to give a detailed description of the storage used for each 
value that is generated during program execution. Since there are many ways to 
store a value in computer memory, there are many types of value descriptions in 
PL/I; in fact, the size and complexity of PL/I is largely a consequence of the 
many ways in which value storage can be described.

As this section continues, it gives a brief description of s torage uni ts, 
which are used to hold PL/I values during program execution. After that, the 
section gives a long description of the s tor age types, which are used to 
describe the kinds of values accommodated by a given storage unit. Most of the 
description of the storage types follows the same outline as the previous 
section on "Values”, dealing with arithmetic, string, address, area, and 
aggregate values; however, a new concept, a 1i gnmen t, is described at the end of 
the section.

STORAGE UNITS

Whenever a program refers to a value in any way, that value resides in a 
s torage unit. When a constan t appears in a program, it refers to a storage unit 
that contains an unchanging value. When a variable name appears, it refers to a 
storage unit that is used to store a computed result for later use. Even a 
func t i on reference or an opera to r express i on designates a storage unit in which 
its result is stored, briefly, until that value is used elsewhere.

Suppose that the variable 
then a portion of data storage

names ALPHA and BETA are used in a PL/I 
can be diagrammed as follows:

program;

ALPHA L

BETA /
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This diagram contains two storage units. Each storage unit consists of a 
des i gnator, which is the name of a variable, and a box, which can hold a value. 
Suppose, next, that the following assignment statements are executed:

ALPHA = 3.8;

BETA = -2*ALPHA;

Immediately after these assignments, the storage units become:

ALPHA / +3.8

BETA / -7.6

Each storage un t now has a contents as well as a designator and a box.

STORAGE TYPES

It is possible to design a programming language in which each storage unit 
can hold any type of value. Some of the interactive languages for the solution 
of simple problems by non-programmers are designed in this way. In such a 
language, the same variable can accommodate any kind of number or, for that 
matter, an array of 50 numbers; and if the language has string values or address 
values, then the variable can also accommodate them. Such a language is easy to 
learn, but its programs are executed much less efficiently than they could be.

A principal requirement for the efficient execution of a program is the 
restriction of the kinds of values that can be assigned to a given storage unit. 
In PL/I , this restriction is applied by associating a s to rage jLZpe. with each 
storage unit. The storage type gives three kinds of information, as follows:

The data type describes the 
single datum, such as a 
address.

range and representation of storage for a 
number or a character-string or a program

The aggregate type describes the 
values is arranged in an array or

way storage for a collection of 
a s tructure.

The a 1 i gnment type describes the way the storage is laid out in 
hardware memory and thus determines the memory required and the ease 
of access.

PL/I provides for efficiency in two ways. First, it requires a storage type so 
that the range of the storage unit is known when the program is compiled. 
Second, it provides many different storage types so the programmer can choose 
the representation best suited to the problem.

Two introductory examples of the interpretation of storage types follow. 
The examples depend on rules that are given later in this section, when the 
various data types, aggregate types, and alignment types are described.

3-2 DE05



As the basis for the first example, consider the following DECLARE 
s ta temen t:

DCL GAMMA FlXED(8);

This statement gives the storage type for the variable named GAMMA; it does so 
by means of the scale a 11 r i bu te FIXED and the precision attribute (8). The 
statement uses various abbreviations and defaults for the storage type, and 
without them the statement would be:

DCL GAMMA REAL FIXED BINARY PRECISI0N(8,0) ALIGNED;

According to this declaration, the storage type for GAMMA is as follows:

The data type is REAL FIXED BINARY PR EC ISI ON(8,0). This means that 
the contents of the storage unit named GAMMA must be a number that can 
be expressed as a signed eight-digit binary integer.

The aggr egate type i s scalar since no aggregate type is explicitly 
given in the DECLARE statement. This means that the storage unit 
accommodates a single number, not an array or a structure of numbers.

The al i gnment type is ALIGNED. In this case, a full word must be 
allocated for the variable, so that access to the variable is 
eff i c i ent.

The details of the data type for this example are discussed later in this 
section under "Arithmetic Storage".

The following is a diagram of the storage unit for GAMMA as just declared:

F I XED(8)
GAMMA / -15

The storage unit now has the s to rage type written above it as well as a 
designator, a box, and a contents. Observe that the contents is a value that 
satisfies the restriction imposed by the storage type.

As a second example of the declaration of the storage type, consider the 
following:

DCL 01 CUSTOMER ALIGNED,
02 NAME CHAR(18), 
02 CODE(2) DEC(4);

This statement gives the storage type for the variable named CUSTOMER; it does 
so by means of attributes and level numbers. The storage type, by itself, is:

01 ALIGNED, 02 CHAR(18) 02 DIM(2) DEC(4)

Once again, the statement uses various abbreviations and defaults for the 
storage type, and without them the statement would be;

DCL 01 CUSTOMER ALIGNED,
02 NAME CHARACTERC18) NONVARYING ALIGNED,
02 CODE DIMENSIONS) REAL FIXED DECIMAL PR EC I S I ON ( 4, 0 ) ALIGNED;
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According to this declaration, the variable CUSTOMER is a sequence of three 
components, and its storage type is as follows:

The data type is CHARACTERC18) NONVARYING for the first component and 
REAL FIXED DECIMAL PREC ISI ON(4,0) for the last two components. This 
means that the first component accommodates a string of 18 characters 
and the second and third components each accommodates a signed 
four-digit decimal integer.

The agg rega te type is 01z 02, 02 DI MENS I0N(2). This means that the 
variable is a structure with two members, and the first member is a 
scalar while the second is a one-dimensional array with two elements.

e The a 1 i gnment type is ALIGNED for 
that the variable should be 1 
access rather than to save space, 
words; if it had been UNALIGNED, 
words.

The details for this storage type are given 
of the example is to provide an introductio

all three components. This means
aid out in memory to permit efficient

In GCOS, the variable takes nine
it could have been packed into seven

later in this section; the purpose 
n, not a complete explanation.

The following is a diagram of the storage units for CUSTOMER as just 
dec 1 ar ed:

CHAR(18) ALIGNED
CUSTOMER .NAME J_ /

DEC(4) ALIGNED
--------- ___ .CODEC 1) L_____________  _ - J

DEC(U) ALIGNED
--------------------------- (2) / /

In this diagram, the aggregate type is shown by the way the three designators 
are arranged. The hyphens are used like ditto marks, so that the designators 
for the storage units are:

CUSTOMER.NAME
CUSTOMER.CODEC 1)
CUSTOMER.CODEC 2)

For convenience of discussion, the storage for the entire variable is called a 
storage unit. Thus one speaks of a structure storage unit that is made up of 
three component storage units just as one speaks of a structure value made up of 
three component values.

ARITHMETIC STORAGE

PL/I is designed primarily for operations on arithmetic values. If 
differences of scaling and precision are ignored, there are eight different ways 
to represent an arithmetic value in storage. The choice.of one of.these kinds 
of storage and the choice of an appropriate precision is a choice between 
convenience and efficiency. For example, it is more convenient to use decimal 
numbers throughout, but scientific computations can be performed much more 
efficiently in binary. For another example, it is more convenient to use a 
large number of digits for a variable, but it is more efficient to determine 
exactly how many digits are required and use no more. The selection of the type 
of storage for an arithmetic variable is an important part of the engineering of 
a PL/I program.
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This discussion begins by defining the arithmetic data types and their 
correspond!ng storage units, continues with abbreviations and defaults that 
allow data types to be written more concisely, gives examples of various 
arithmetic storage units, and concludes with guidelines for the selection of a 
data type for a given purpose.

Arithmetic Data Types

The complete data type for an 
sequence of four arithmetic attributes. 
base, and prec i s i on, as described in the

arithmetic storage unit is given as a 
These attributes are the mode, scale, 
following paragraphs.

THE MODE ATTRIBUTE

The mode attribute is one of the following keywords:

REAL 
COMPLEX

These attribute keywords are taken from the language of mathematics where they 
have a technical meaning that is different from their everyday meaning. The 
choice of mode is important only in scientific applications that make use of the 
theory of complex numbers. In all other applications of PL/I, the mode 
attribute must always be REAL.

A storage unit with the REAL attribute accommodates a number that can be 
represented as a signed sequence of digits in which a decimal or binary point 
appears. This includes all numbers that are used in business applications, 
system programming, and everyday calculation. It also includes most numbers 
used in scientific applications.

A storage unit with the COMPLEX attribute accommodates a number that can be 
represented as a pair of real numbers, called the rea1 part and the i mag i na ry 
part, respectively. Both members of the pair have the same scale, base, and 
precision, as specified by the other attributes of the data type.

THE SCALE ATTRIBUTE

The scale attri bute is one of the following keywords:

FIXED
FLOAT

These attribute keywords refer to the decimal or binary point of the number. In 
a FIXED storage unit, the point cannot move, whereas in a FLOAT storage unit, 
the point can be thought of as moving to accommodate a wider range of values in 
a given number of digits.
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A storage unit with the FIXED attribute accommodates a value that can .be 
represented as a signed sequence of digits in which a decimal or binary point 
appears. The point can appear anywhere, but its position is determined when the 
storage unit is created and remains fixed throughout the existence of the 
storage unit. For a given FIXED storage unit, the number of digits and the 
position of the point are both specified by the precision attribute, which is 
described a little later.

A storage unit with the FLOAT attribute accommodates a value that can be 
represented in one of the following forms:

m * (2**>e) (if the scale is BINARY)

m * ( 10**_e) (if the scale is DECIMAL)

where m is the manti s sa and e. is the exponent. The mantissa is a signed 
sequence of digits in which a point appears. For BINARY scale, the point 
appears to the left of the first digit, so that the mantissa is a fraction. For 
DECIMAL scale, the decimal point appears to the right of the last digit, so that 
the mantissa is an integer.

The number of digits in the mantissa is determined by the precision 
attribute, which is described later. The exponent must lie in the range:

“128 1 e < +127

When a value is assigned to the storage unit, there is some freedom in the 
choice of the mantissa and the exponent. For example, if the mantissa has four 
decimal digits, then the value 1.4 can be represented in the following ways:

+ 0014.*(10** -1) 
+ 0140.*(10**-2 ) 
+ 1400.*(10**- 3)

However, a representation is never chosen that discards 
than necessary, and 1.4 would not be represented as

+0001.*(10**0)

Thus the variable exponent not only allows a wide range 
allows the full use of each digit of the mantissa whenever

more low-order digits

of values but also 
necessary.

The exponent can be thought of as expressing the number of places the 
mantissa point should be moved to give the true value of the storage unit. That 
point of view is the source of the term ’’floating point” and the keyword FLOAT.

THE BASE ATTRIBUTE

The base attribute is one of the following keywords:

Bl NARY
DECIMAL

These attribute keywords refer to the number system that is used in representing 
the value.
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A storage unit with the BINARY attribute uses binary digits in representing 
its value. Thus a FIXED BINARY storage unit that has three significant digits 
followed by a binary point can accommodate the integers from -7 to + 7.

A s torage unit with 
representing its value, 
significant digits followed 
-999 to +999.

the DECIMAL attribute uses decimal digits in 
Thus a FIXED DECIMAL storage unit that has three 
by a decimal point can accommodate the integers from

THE PRECISION ATTRIBUTE

The complete precision attribute has one of the following forms:

PREC I S I ON(jd,£)

PRECISIONS)

where _p and c[ are the number-of-d i gi ts and the sea 1 e~factorz respectively. The 
first form is used when the scale is FIXED and the second form is used when the 
scale is FLOAT. The number-of-digits and the scale-factor must each be given as 
an optionally-signed integer constant. They cannot be given as general 
expressions because their values must be known to the compiler.

The number-of-d i g i ts determines how many digits appear in the storage unit. 
The number-of-digits must lie within a certain range, and that range depends on 
the scale and base attributes that appear with the precision attribute. The 
ranges are:

Scale and Base Mini mum Maxi mum

FIXED BINARY 1 71

FLOAT BINARY 1 63

FIXED DECIMAL 1 59

FLOAT DECIMAL 1 59

This table shows, for example, that the storage type REAL FIXED BINARY 
PR EC ISI ON(70,0) is valid but REAL FIXED DECIMAL PR EC ISI ON(70,0) is not. The 
ranges are not part of Standard PL/I; they are chosen for each implementation, 
and the values shown here are those for GCOS.

In a FLOAT storage unit, the number-of-digits refers to the digits in the 
mantissa and does not include digits used in the exponent. In the case of a 
FLOAT BINARY storage unit, the number-of-digits establishes a mini mum for the 
number of mantissa digits. The purpose of this latitude is to permit efficient 
use of floating-point binary hardware; in GCOS, the provision is exploited as 
follows: if the number of digits is 27 or less, then 27 digits are used for the 
mantissa; otherwise, 63 digits are used. This corresponds to the choice between 
single and double precision floating-point binary in the GCOS hardware.
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The seale-factor 
of the point in a FIXED 
fol lowing range:

determines the number of significant digits to the right 
storage unit. The scale-factor is restricted to the

Sea 1 e

FIXED

FLOAT

Mini mum Ma x i mum

-128 +127

(not appli cab 1e)

A fixed-point storage unit 
position the point and are 
number-of-d i g i ts. Suppose the 
cases must be considered:

can have filler zeros. These zeros are used to 
not counted in the determination of the 

precision attribute is PR EC I S I 0N( jd, £); then three

If P 2 q 2 0/ then no filler zeros are required because the point is 
adjacent to one of the significant digits. For example, the storage 
type REAL FIXED DECIMAL PR EC ISI ON(5,2) accommodates any value that can 
be represented by a sign, three significant digits, a decimal point, 
and two more significant digits. Thus the value -203.49 or the value 
1.2 can be accommodated.

If p < q, then q-p filler zeros are assumed between the point and the 
first significant digit. For example, the storage type REAL FIXED 
DECIMAL PRECISI0N(5,7) accommodates any value that can be represented 
by a sign, a decimal point, two filler zeros, and five significant 
digits. Thus the fraction .0044244 is accommodated by this storage 
type but .0144244 is not.

If q < 0, then -q filler zeros are assumed between the last
significant digit and the point. For example, the storage type REAL 
FIXED DECIMAL PR EC I S I ON ( 5, - 3 ) accommodates any value that can be 
represented by a sign, five significant digits, three filler zeros, 
and a decimal point. Thus the integer 55955000 is accommodated by 
this storage type, but the integer 55955300 is not (and must be 
approximated).

In practice, most 
satisfies p 2 Q 2

programs use only fixed variables whose precision 
0; therefore filler zeros are not often used.

at t r i bu te

ABBREVIATIONS AND DEFAULTS

A typical program uses many variables, and a data type must be given for 
each variable; therefore, PL/I permits the use of many abbreviations and 
defau1ts in the specification of data type attributes.

From the point of view of the PL/I compiler, any selection of abbreviations 
and defaults can be used, and the selection can differ from one place in the 
program to another. However, the inconsistent use of abbreviations and defaults 
makes a program confusing, and a consistent policy should be adopted. This 
Reference Manual provides one such policy: every abbreviation or default of 
PL/I should be used except for those whose avoidance is explicitly recommended 
in this Reference Manual.
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The following abbreviations are defined for the keywords used in arithmetic 
a11 r i bu tes:

K e ywo r d

Bl NARY

DECIMAL

PRECISION

PRECISION

COMPLEX

Abbreviation

BIN

DEC

PREC (rare1y used)

(omit the entire keyword PRECISION if it 
immediately follows a mode, scale, or base 
attribute)

CPLX (not recommended)

The abbreviation PREC is rarely used because it is customary to write the 
precision attribute immediately after some other arithmetic attribute and omit 
the entire PRECISION keyword. For example, REAL FIXED DECIMAL PRECISI0N(5,2) is 
abbreviated as REAL FIXED DEC(5,2) so that all that is left of the precision 
attribute is (5,2). The abbreviation CPLX is not recommended because it is 
difficult to remember and impossible to pronounce.

A default a 11 r i bute is the attribute that is assumed by the PL/I compiler 
when a required attribute is not given in the program. For example, if a 
variable is declared FIXED DEC(5,2), then the compiler treats the variable as if 
it had been declared REAL FIXED DEC(5,2); it does so because the default 
attribute for the mode is REAL. The defaults for the arithmetic data type are:

Om i t ted I tern 

mode attribute 

scale attribute 

base attribute 

number-of-d i gi ts

s ca1e-factor

Defau1t

REAL

FIXED

Bl NARY

17 (for FIXED BINARY)
7 (for FIXED DECIMAL)

27 (for FLOAT Bl NARY)
10 (for FLOAT DECIMAL)

0 (for FIXED scale only)

The table just given shows that the default value for the number-of-digits 
depends on the scale and base of the data type; thus there are four possible 
default values. The default values for the number-of-dIgits are not part of 
Standard PL/I, and the values given are those for GCOS. However, it is 
understood that any implementation of PL/I should choose a default for FIXED 
values that is appropriate for an index or subscript and a default for FLOAT 
values that is appropriate for most scientific calculations.

3-9 DE05



The abbreviations and defaults are designed to favor the most commonly used 
storage types, as shown in the following examples:

Complete Data Type Recommended Fo rm

REAL FIXED BINARY PREC1S10N(17, 0) Fl XED

REAL FIXED BINARY PREC1S10N(30,0 ) FlXED(30)

REAL FIXED DECIMAL PR EC 1S1 ON(8,2) DEC(8,2)

REAL FLOAT BINARY PREC1S1 ON(27) FLOAT

REAL FLOAT BINARY PREC1S1 ON(60) FLOAT(60)

COMPLEX FLOAT BINARY PREC 1 S10N(27) COMPLEX FLOAT

The first two 
scale, it could 
at all. That 
confusing. The

examples require some discussion. Since FIXED is the default 
have been omitted from the first example, leaving no attributes 

is valid, but a declaration with no vestige of a data type is 
second examp 1e.cou1d have been written in two other ways:

B I N ( 3 0 ) 
PREC(30)

However, the use of FIXED contrasts nicely 
and fifth examples, and is most consistent

with the use of FLOAT in 
with fami 1i ar usage.

the fourth

Examples of Arithmetic Storage Units

As an example of the use of an arithmetic storage unit, consider the 
following program:

P: PROC;
DCL ALPHA DEC(6,2);

ALPHA = -31.253;
• • •
END;

The storage unit for ALPHA can be diagrammed as:

DEC(6,2)
ALPHA / -31.25 /

The data type is written above the box to indicate the restriction on the value 
accommodated by the box. Since the scale-factor is two, the storage unit can 
accommodate only two fractional digits; therefore, the value -31.253 is 
approximated when it is assigned to the storage unit.

A diagram called a data frame is useful in describing the capacity of a 
storage unit. A data frame is produced by combining the data type with the box; 
the result is a diagram that suggests the structure of storage. When a data 
frame is used for the variable ALPHA just discussed, then the result is:

S 9 9 9 9 9 9
ALPHA /-/0/0/3/1/./2/5/
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In this diagram, each of the seven boxes holds a single character. The symbol 
above each box determines the kind of character allowed: S allows a sign, 9 
allows a decimal digit, and other symbols are used for other restrictions. This 
diagram makes it clear that the storage unit accommodates any value that can be 
represented as a sign followed by four decimal digits followed by a decimal 
point followed by two decimal digits. It also makes it clear that the last 
digit of -31.253 must be dropped before assignment to the storage unit can 
occu r.

A data frame provides useful information about the data type as it is 
applied to a storage unit. The diagram should be viewed as having three 
componen ts:

The characters written in the boxes are the contents of the storage 
unit. They are the only part of the storage unit that can change; but 
they do not, by themselves, represent the value of the storage. In 
the example above, the contents is -003125 and this sequence of 
characters would not, in itself, be interpreted as the value -31.25.

The characters in line with the contents but not enclosed in boxes are 
the i nterpretat i on of the storage unit. The contents and the 
interpretation together are a representat i on of the value of the 
storage unit, and the representation is always a valid PL/I constant 
expression. In the current example, the representation is -0031.25 
and this is a valid signed constant and could be used in a program to 
represent the value -31.25.

• The data frame without contents or interpretation is an indication of 
the ha rdware s to rage required for the storage unit. In the current
example, the storage unit has one sign box (one byte in a decimal 
number) and six decima 1-digit boxes (each one byte); therefore the 
storage unit requires seven bytes of memory.

The data frames are not a part of the PL/I language itself; they are introduced 
here as a useful way of describing a storage unit. Since a PL/I program cannot 
depend on the way in which arithmetic values are represented, the purpose of the 
data frames is not to show how the components of a value can be operated upon.

FIXED DECIMAL STORAGE UNITS

A FIXED DECIMAL storage unit closely approaches everyday notation for a 
number. The availability of these storage units make it possible to entirely 
avoid fractional fixed-point binary arithmetic and thus eliminates one of the 
major problems of computing. Four examples of REAL FIXED DECIMAL storage units 
follow, each with a different precision attribute. Each example gives the 
declaration of a variable and then the storage unit that corresponds to the 
dec 1 a rat i on.

S999999 99
DCL U1 DEC(8,2); U1 ///////_ /./_/_ /

The complete data type for this storage unit is REAL FIXED DECIMAL 
PR EC ISI ON(8,2). The data type accommodates any number with magnitude less than 
one million to the nearest one hundredth. It would be useful for a sum in 
dollars and cents and, since it has a sign, it could be used for a credit or a 
debi t.
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S 9 9 9 9 9 9
DCL U2 DEC(6); U2 ////////.

The complete data type for this storage unit is REAL FIXED DECIMAL 
PRECISI0N(6,0). It accommodates any integer with magnitude less than one 
million.

S 9 9 9 9 9 9
DCL U3 DEC(6,9); U3 / /.OOP/ //////

The complete data type for this storage unit is REAL FIXED DECIMAL 
PRECISI0N(6,9 ) . The scale-factor is greater than, the number-of-digits and 
therefore filler zeros appear between the decimal point and the first 
significant digit. The storage unit accommodates a fraction with magnitude less 
than one thousandth to the nearest billionth.

S 9 9 9 9
DCL U4 DEC(4,-2); UL / / / / / /00.

The complete data type for this storage unit is REAL FIXED DECIMAL 
PR EC ISI0N(U,-2 ) . The scale-factor is negative and therefore filler zeros appear 
between the last significant digit and the decimal point. The storage unit 
accommodates an integer with magnitude less than one million to the nearest 
hu ndr ed.

FIXED BINARY STORAGE UNITS

A FIXED BINARY storage unit can be declared with the same variety of 
precisions as were just illustrated for the FIXED DECIMAL storage units. In 
practice, however, a FIXED BINARY storage unit is rarely used with a 
scale-factor other than zero. Two examples follow.

Sill
DCL VI Fl XED(3); VI III Z / .B

The complete data type for this storage unit is REAL FIXED BINARY 
PRECIS10N(3,0) . The 1 symbol over a box indicates that it must contain a binary 
digit. The B at the right end shows that the represen tation is binary. The 
storage unit can accommodate, for example, the value -2; the representat ion for 
that value is -110.B.

S 1 1
DCL V2 FIXED; V2 ./, £/--( 17B

The complete data type is REAL FIXED BINARY PR EC ISI ON(17,0). The parenthesized 
17 means that there are seventeen digit positions in the storage unit. The 
storage unit accommodates any integer whose magnitude is less than 2**17 (which 
is 131072). It is the recommended storage unit for most indexes and subscripts.
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FLOAT BINARY STORAGE UNITS

A FLOAT BINARY storage unit is compatible with the f1oating-point binary 
hardware operations that are part of many computers. Scientific applications 
use FLOAT BINARY storage units for physical variables. As already stated in the 
description of the scale attribute/ a FLOAT BINARY storage unit accommodates a 
value of the form:

m * (2**e)

where m is the man t i ss a and .e is the exponent. The range of a FLOAT BINARY 
storage unit is determined primarily by the fact that its exponent lies in the 
range -128 through +127. In GCOSZ any FLOAT BINARY storage unit can accommodate 
values whose magnitudes are in the range 10**-38 to 10**+38. Three examples of 
FLOAT BINARY storage units are given here.

DCL XI FLOATC8); XI

The complete data type for this storage unit is REAL FLOAT BINARY PRECISI0N(8). 
The. mantissa is a signed fraction with eight or more digits; in GCOSZ it has 27 
digits. When the representation is written, the exponent is written as an 
optionally-signed decimal integer, but in the hardware it is represented in 
seven bits. The B at the end of the representation applies only to the 
mantissa. The storage unit can accommodate, for example, the value 4.5; the 
representation used for that value is +.10010000E3B.

DCL X2 FLOAT; X2

The complete data type for this storage unit is REAL FLOAT BINARY PR EC ISI ON(27). 
In GCOS, the mantissa has 27 digits. This data type (without an explicit 
precision attribute) is used for most scientific variables.

DCL X3 FLOAT(28); X3

The complete data type for this storage unit is REAL FLOAT BINARY PR EC ISI ON(28). 
In GCOS, the mantissa has 63 digits. Thus the increase of the number-of-digits 
from 27 to 28 causes the change from GCOS single precision floating-point 
arithmetic to doub1e-precision.

FLOAT DECIMAL STORAGE UNITS

A FLOAT DECIMAL storage unit is used only under exceptional circumstances. 
It can be used to get more precision than is available from FLOAT BINARY since 
59 decimal digits of precision is equivalent to about 196 binary digits of 
precision. It can also be used to avoid binary represen tation, but the 
operations on FLOAT DECIMAL values are so much more expensive than those on 
FLOAT BINARY values that this course is seldom followed. A FLOAT DECIMAL 
storage unit accommodates a value of the form:

m * (10**e)

where m is the mantissa and is the exponent. Any FLOAT DECIMAL storage unit 
can accommodate values whose magnitudes are in the range 10**127 to 10**-69. 
One example is given here.
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DCL Y1 FLOAT DEC(59);
S 9 9 exp

Y1 / / /--(59)--/ / . E//

The complete storage type for this storage unit 
PRECISI0N(59). The mantissa is a signed decimal integer 
storage unit has greater precision and range than 
occupies 16 words of GCOS memory.

is REAL FLOAT DECIMAL 
with 59 digits. This 

any other i n PL/I . It

COMPLEX STORAGE UNITS

A COMPLEX storage unit can have any scale, base, or precision attributes. 
In practice, however, it is always used with the FLOAT BINARY attributes. Since 
a complex number is a pair of real numbers, a COMPLEX storage unit is formed by 
placing two REAL storage units together and marking the second as the imaginary 
part by suffixing an I to it. An example is:

DCL Z1 COMPLEX FLOAT;

S 1 1 exp S 1 1 exp 
Z1 /_/./_/--( 2 7+/BZ_/ 2 7+) /Bl

Everything through the first B represents the r ea1 P3 rt of the storage unit and 
the remainder is the i mag i nary pa r t.

Guidelines for Arithmetic Data Types

The choice of data types for the numeric variables is a major part of the 
design of a program. The first choice that has to be made is between the 
ar i thmet i c storage types, just described, and the pi ctured storage types, 
described later in this section. The arithmetic storage types can be operated 
on efficiently but require conversions when input/output is performed; they are 
appropriate when calculations are relatively complicated, as in scientific 
programming, or when the packing of data is important, as in system programming. 
The pictured storage types are appropriate when a major consideration is the 
format of input and output, as in business programming.

Once the general decision has been made, other details must be decided. 
For an arithmetic storage unit, the mode, scale, base, and precision must be 
selected. These selections affect the range of the input data accepted by the 
program, the accu racy of the results developed by the program, the conven fence 
of writing and debugging the program, and the cos t of executing the program. 
The questions of range and accuracy depend on the mathematical analysis of the 
algorithm being programmed. The questions of convenience and cost depend on the 
human and mechanical factors of the programming system. Guidelines for the 
choice of the attributes of an arithmetic storage unit are given here.

THE CHOICE OF MODE

Except for scientific applications, the mode is always REAL; and since the 
default mode is REAL, most programs never make explicit use of a mode attribute. 
Within a given scientific program, the requirement for a COMPLEX mode attribute 
is determined by the mathematical formulation of the given program. The choice 
of mode is entirely a question of range.
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THE CHOICE OF SCALE AND BASE

The choice of the scale attribute is a choice between the efficiency of the 
fixed-point operations and the wide range of floating-point arithmetic. The 
choice of the base attribute is a choice between the efficiency of binary 
operations and the convenient familiarity of decimal representation. The 
following rules contribute to the selection of the scale and base for a 
particular storage unit:

When a storage unit is used for an exact integer that remains in a 
reasonable range, it should be FIXED BINARY. This rule applies to 
subscripts, indexes, and counters.

When a storage unit is used for a non*integer quantity that must be 
approximated with care, it should be FIXED DECIMAL. An example is a 
do 11 ars-and-cents quantity.

When a storage unit is used for a quantity that is inherently 
approximate, it should be FLOAT BINARY; however, if an exceptional 
requirement for precision exists, the storage unit should be FLOAT 
DECIMAL. Most physical quantities, such as weight, length, speed, and 
so on, should have the FLOAT attribute.

In some business applications, it is convenient to use the DECIMAL base for all 
storage units and thus avoid the mixing of DECIMAL and BINARY values; this 
policy requires a departure from the first of the rules just given.

THE CHOICE OF PRECISION

The precision attribute gives the number-of-digits for every arithmetic 
storage unit and gives the scale-factor for FIXED storage units. The choice of 
precision for FLOAT variables is usually easy because there is no danger of 
overflow and a detailed analysis of the accuracy of the calculation is 
impossible. The choice of precision for a FIXED variable is much more difficult 
because of the danger of overflow and the possibility that significant digits 
will be lost. Some form of analysis is usually required for the choice of 
precision for a FIXED variable.

The defaults for the number-of-digits depend on a given implementation of 
PL/I and can vary from one computer to another. Consider a FIXED variable that 
is used as a counter. If an analysis has shown that the variable will never 
require more than 10 binary digits, then it should be declared FIXED(IO). If, 
on the other hand, a less precise analysis has determined that a ’’fairly large” 
capacity will suffice, then it should be declared FIXED. In the first case, the 
programmer makes a specific assertion about the use of the variable; in the 
second case, the programmer gives the compiler latitude to select an efficient 
representation for the given hardware.

When a large counter is required, the number of digits should be kept less 
than 35 if possible. Although a FlXED(35) variable occupies only one word of 
GCOS memory, operations on the variable tjpjnd to get JjTtCLjjQub J* Thus 
FIXED(30) would be a better choice. " .
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ORDINARY STRING STORAGE

A string storage unit is either ord i nary or pi ctu red. The differences 
between the two kinds of string storage are more important than their 
similarities, so they are described separately. Ordinary string storage, 
described here, is primarily used for text of a general nature, such as column 
headings, error messages, or complete documents. Pictured string storage, 
described later, is primarily used for numeric values that are represented as 
character s t r i ngs.

Ordinary String Data Types

The complete data type for an ordinary string storage unit is given by a 
sequence of two s t r i ng attributes. These attributes are the s t r i ng-type and the 
variability/ as described in the following paragraphs.

THE STRING-TYPE ATTRIBUTE

The string-type attribute has one of the following forms:

CHARACTER(mJL)

BIT(ml)

where m1 is the max imum-1ength of the string. The maximum length must be an 
extent: that is, it must have the form:

exp 

exp REFER ref

where exp is an expression and ref is a reference. The first form is used in 
most cases; it must yield a value that can be converted to a FIXED BINARYC24) 
value. The second two forms are described in later sections on "Storage 
Management" and "Procedure Invocation", respectively.

A storage unit declared CHARACTER(m 1 ) can accommodate a sequence of n. ASCII
characters, where ri is the value of m 1 at the time the storage unit is
allocated. Similarly, a storage unit declared BIT(ml) can accommodate a 
sequence of _n bits, where _n is the value of m 1 at the time the storage unit is
allocated. A b i t is one of the characters 0 or 1.
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THE VARIABILITY ATTRIBUTE

The var i ability attribute is one of the following keywords:

NONVARYING
VARY I NG

An ordinary string storage unit with the NONVARYING attribute can accommodate a 
string of only one length: the maximum length specified in the string-type 
attribute. When a shorter string is assigned to a NONVARYING storage unit, 
blanks or zeros (for a character or bit string, respectively) are added to the 
right end of the string until it has the required maximum length. An ordinary 
string unit with the VARYING attribute can accommodate a string of any length 
from zero up to and including the maximum length given in the string-type 
attribute.

ABBREVIATIONS AND DEFAULTS

The following abbreviations are accepted for the keywords used in ordinary
string attri butes:

Keyword Abb rev i a t i on

CHARACTER CHAR

VARYING VAR

The defaults for the string attributes are:

Omi tted I tern Default

variability attribute NONVARYING

maximum-1ength 1

Some examples of the application of these rules are:

Complete Data Type Recommended Form

CHARACTERCN+1) VARYING CHAR(N+1) VAR

CHARACTERC1) NONVARYING CHAR

BIT(l) NONVARYING BIT

The last case is especially useful because a one-bit string is used as a Boolean 
value in PL/I.
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Examples of Ordinary String Storage

As an example of the use of an ordinary string storage unit, consider the 
following program:

P: PROC;
DCL BETA CHARC15);

BETA = "JOHN Q. SMITH";
• • •
END;

The storage unit for BETA can be diagrammed as:

CHAR(15)______________
BETA / "JOHN Q. SMITH " /

Because the variable is NONVARYING by default, two blanks are added at the right 
end of the assigned character string to make it 15 characters long.

A data frame
variable BETA,

can be used for an ordinary string storage unit, 
discussed, the resulting diagram is:

XXXXXXXXXXXXXXX
BETA "/J/Q/H/.N/ /S/M/J^T/JJ,

For the

The diagram has 15 boxes, one for each character in the stored string. The X 
over each box indicates that the box can hold any ASCI I character.

CHARACTER STORAGE UNITS

Two examples of CHARACTER storage units are given here; one is NONVARYING 
and the other is VARYING.

X X
DCL SI CHAR(80); SI 80)--£_/"

The complete data type for this storage unit is CHARACTERC80) NONVARYING. The 
storage un4t accommodates a character string that is exactly eighty characters 
long; it could be used, for example, to store the contents of an eighty-column 
card.

CNT XXXXXX
DCL S2 CHAR(6) VAR; S2 / 3 /"/S/A/M/&/W/27"

The complete data type is CHARACTERS) VARYING. The storage unit can 
accommodate any character string that has from zero to six characters. The 
storage unit is shown with a value in it; that value is "SAM". The CNT box 
gives the current length of the string in the storage unit; the current length 
is filled in each time a new value is assigned to the storage unit. The last 
three character positions in the storage unit contain characters which, 
presumably, are left from previous values of the storage unit.
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BIT STORAGE UNITS

The BIT storage units are defined in the same general way as the CHARACTER
storage units. In practice, however, BIT s to rage units are used i n ra ther
specialized ways. Two examples are given here.

DCL T1 BIT; T1 ii£_/”B

The complete data type is BIT(l) NONVARYING. The storage type is used when a
Boo 1ean var i ab1 
interpreted as

e i s requ i red. It can
fol lows:

have on 1 y two values, and these are

"1"B means "true"

"0"B means "false"

Such values are used in IF statements, loops, and other statements that control 
program flow.

DCL T2 BIT(5);

The complete data type is BIT(5) NONVARYING. The storage type could be used to 
hold five flags, each of which represented the truth or falsity of some 
position. Such bit strings are especially useful In programs for process 
control.

Guidelines for Ordinary String Data Types

A CHARACTER storage unit can be used in a general way: it is useful for 
holding a single character, for holding a proper name or a short phrase, or for 
holding a document of considerable size. Further, both the VARYING and the 
NONVARYING CHARACTER storage unit are useful. In contrast, a BIT storage unit 
is specialized: it is usually just one BIT in length and it is almost always 
NONVARYING.

As the diagrams given in the examples suggest, the amount of storage 
required for a string depends on the maximum-1ength, not on the current length. 
Thus a CHARACTER(1000) VARYING storage unit occupies the same amount of storage 
(251 words) regardless of whether it contains a string value of length one or 
1000.

A NONVARYING string is handled more efficiently than a VARYING string. 
Specifically, a VARYING string requires an extra GCOS word to keep the 
cur rent-1ength counter in and the code for accessing the storage unit is more 
complicated. Therefore, when efficiency is the only consideration, a NONVARYING 
string should be used.

Often the choice of the variability attribute is determined by the nature 
of the data. For example, consider the storage for a textbook that is being 
edited. An individual line might be kept in a NONVARYING string storage unit, 
since lines are of constant length. On the other hand, an individual word drawn 
from the text might be stored in a VARYING storage unit.
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PICTURED STRING STORAGE

Pictured-string storage units offer an almost complete alternative to 
arithmetic and ordinary string storage units; that is, many useful programs are 
written in a natural and convenient way using only pictured storage units. 
Pictured storage is most often used in business applications, but it can be used 
very effectively elsewhere.

The pictured storage unit eliminates the use of a special representation 
for numbers inside the computer; it uses the same representation inside that 
people use on the outside on cards and listings. The representation is a 
sequence of characters arranged in a special way: decimal digits, a decimal 
point, a properly placed sign, and so on. When pictured storage is used, 
input/output does not involve a conversion between an encoded internal 
representation and the external text; instead, it simply requires the 
transmission of a character string.

A pictured storage unit is thought of as having two values. When it is 
referenced in a context that requires a character string (as in an output 
statement), then its value is a character string. When it is referenced in a 
context that requires an arithmetic value (as in a calculation), then its value 
is an arithmetic value.

The use of a character string to store a numeric value is less efficient 
than the use of a specially encoded sequence of bits. However, some efficiency 
can be achieved if the exact form of the character string in a given storage 
unit is known to the compiler. The purpose of the ’’picture" that is given in 
the declaration of a pictured storage unit is to establish the exact form of the 
string accommodated by the storage unit. As an example, consider the following 
declaration:

DCL OMEGA PI CTURE’’S999" ;

This declaration asserts that the storage unit designated by OMEGA will 
accommodate a string of four characters. It also specifies that the first 
character will be a sign and the remaining characters will be decimal digits. 
This allows the compiler to conclude that the value of OMEGA can always be 
interpreted either as a character-string value of data type CHAR(4) or as an 
arithmetic value of data type REAL FIXED DECIMAL(3).

Pictured Data Types

The complete data type for a pictured storage unit is a picture attribute 
followed by an optional mode attribute. These attributes are described in the 
following paragraphs.
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THE PICTURE ATTRIBUTE

The picture attribute has the form:

PICTURE"^”

where p is the p i cture. The picture is a sequence of i nd i ca to rs, each 
optionally preceded by a repii cator. A replicator is a parenthesized, unsigned, 
decimal integer constant. An example of a picture attribute is:

PICTURE”$(4)$9V.99DB”

In this example, the picture is:

$(U)$9V.99DB

The replicator (4) means that the following indicator is treated as if it 
appeared four times. Thus the equivalent picture attribute is:

PICTURE”$$$$$ 9V.99DB”

The picture contains five different indicators, as follows:

$ 9 V . DB

Each indicator has a special interpretation, and the order in which the 
indicators are given is significant. A full description of the permitted 
pictures and their interpretations is given a little later.

The Classification of Indicators

A complete list of the 
under functional headings, 
section when the individual

indicators follows. The indicators are classified 
and these same headings are used later in this 

indicators are fully defined.

Cl ass i f i ca t i on

no-suppression digit indicator
decima 1 -point indicator
sign indicators
dollar indicator
zero-suppression digit indicators 
drifting-sign digit indicators 
drifting-do11 ar digit indicator 
insertion-character indicator 
arithmetic decima 1 -point indicator 
fixed-point scale-factor indicator 
floating-point indicators 
floating-point scale-factor indicator 
non-numeric indicators

I nd i cato rs

9
V.
S + - CR
$
Z * Y
S + -
$
. , / B
V
F(n) 
E K 
F( n) 
9 A X

DB

In the scale-factor indicators, n. is an 
constant. The following distinctions apply:

opt i ona11y-signed dec i ma 1 i n teger

The 9 indicator is a no-suppression digit indicator 
numeric picture; otherwise, it is a non-numeric 
interpretation is slightly different.

f i t appears i n a 
indicator and the
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The S indicator is a sign indicator if it is the first S. in a 
fixed-point picture, a mantissa picture, or an exponent picture; 
otherwise, it is a drifting-sign digit indicator. Parallel 
considerations apply to the classification of +, -, and $.

The F(n.) indicator is a floating-point scale-factor indicator if it 
appears in a picture with a floating-point indicator; otherwise, it 
is a fixed-point scale-factor indicator.

Observe that eight of the indicators are digit i nd i cators, as follows:

9Z*YS + -$

where some of these are digit indicators only in certain contexts, as just 
noted.

The Classification of Pictures

is useful to classify pictures in the following way:

A picture is non-numer i c if it contains either of the following 
indicators:

A X

Otherwise, the picture is numer i c.

A numeric picture is f1oa t i ng-po i nt if it contains either of the 
following indicators:

E K

Otherwise, the picture is fixed-point.

Examples are:

Picture Attribute

"99A999”
”999999'’
”$ 9V.99CR"

”S9V.999999ES999" 
”SV.999999KS99” 
”S9V.999999”

Classification

non-numer i c 
numer i c 
numer i c

floating-point numeric 
floating-point numeric 
fixed-point numeric
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THE MODE ATTRIBUTE

The mode attribute is one of the following keywords:

REAL 
COMPLEX

This attribute is the same as the mode attribute for arithmetic storage units. 
It is used only with a picture attribute that is nume r i c (that is, that does not 
have an A or X indicator). When the REAL attribute is usedz the picture remains 
as it is given; when the COMPLEX attribute is used, the picture is doubled to 
provide for the real and imaginary parts of a complex value. For example, the 
data type:

PICTURE"S999" COMPLEX

describes a storage unit that has eight character positions, the first four of 
which accommodate a signed, three-digit value for the real part and the second 
four of which accommodate a signed, three-digit value for the complex part.

ABBREVIATIONS AND DEFAULTS

The following abbreviations are accepted for the keywords used in the 
pictured string attributes:

Keyword Abb rev i a t i on

PICTURE PIC

COMPLEX CPLX (not recommended)

A default convention for the numeric pictured string data type is;

Omitted Item

mode attribute

Default

REAL

Interpreting Pictured Storage

The in ter preta t i on of a storage unit determines the way in which a value is 
assigned to the storage unit and later fetched. The operations of assignment 
and fetch do not include data type conversions that are necessary to adjust the 
value of the storage unit to its context; the conversions are separate 
operations, discussed in a later section, under "Value Conversion". The 
operations of assignment and fetch are very simple for arithmetic storage units 
and ordinary string storage units, and require little comment. However, a 
pictured storage unit has two interpretations, depending on the context in which 
it is used: it can be interpreted as a character-string storage unit or an 
arithmetic storage unit. Complications arise in keeping these two 
interpretations consistent with one another.
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THE CHARACTER-STRING INTERPRETATION OF PICTURED STORAGE

The character-string interpretation of a 
definition of a related character-string data 
determined, the arithmetic operations for 
def i ned.

pictured storage unit requires a 
type. Once the related type is 
assignment and fetching can be

Related Character Types

The related cha racter type for a pictured storage unit is defined as:

CHARACTER(l) NONVARYING

where J. is obtained by counting all the characters in the picture except for 
those that appear in the following indicators:

V the arithmetic decima 1-point indicator
K the non-printing floating-point indicator
F(n.) the scale-factor indicator

These indicators are defined later; they are not counted because they contribute 
only to the arithmetic interpretation of a pictured storage unit.

As an
the p i cture

example of the 
attribute:

determination of the related character type, consider

PIC"S999V.99F(-12)”

This picture attribute has the related character type:

CHARACTERS) NONVARYING

The length 7 is determined by counting the four characters S999, ignoring the 
indicator V, counting the three characters .99, and ignoring the indicator 
F ( -12 ) .

The following is an example of a non-numeric picture attribute;

PIC”AAXX9”

This picture attribute has the related character type:

CHARACTERS) NONVARYING

The length 5 is determined by counting all the characters between the quote 
characters.
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The data frame diagram for a pictured storage unit closely resembles that 
for a nonvarying character string. For the first example of a picture attribute 
just given, the data frame is:

For the second example of a picture attribute the data frame is:

A A X X 9 
PIC

Observe that each data frame has a character position for each indicator that is 
counted in the determination of the related character type for the picture.

Character-String Assignments

The character-string assignment operation occurs when any value is assigned 
to a non-numeric pictured storage unit. Before the character-string assignment 
operation begins, the given.value is converted to the related character-string 
data type for the pictured storage unit. The conversion operation is not part 
of the assignment operation, and is covered later, in the section on ’’Value 
Conver s ion”.

Because of the way the related character-string data type is determined, 
the converted character-string value has exactly the number of characters that 
is required by the picture. Each character in the converted character-string 
value is checked against the corresponding indicator. If a character does not 
satisfy the requirements of the indicator, the CONVERSION condition occurs. The 
CONVERSION condition is described later, in the section on ’’Value Conversion”.

As an example of the assignment of a character-string value 
storage unit, suppose the variable X has been declared as follows:

to a pictured

DCL X PIC”XX9999”;

and suppose the following assignment statement is executed:

X = ”0023.15";

The related character-string data type for the given picture is:

CHAR(7)

The character-string constant in the assignment statement already has exactly 
this data type, so no preliminary conversion is necessary. The assignment 
operation can begin. The picture is examined from left to right, and each
indicator is checked against the corresponding character. The CONVERSION
condition occurs on the fifth indicator; it is a 9, which specifies a digit, and
the corresponding character is a period. Therefore the assignment cannot be
made.
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Character-String Fetches

The character-string fetch operation occurs when the value of a numeric 
pictured storage unit is fetched in a context that requires a character-string 
value or when the value of a non-numeric pictured storage unit is fetched in any 
context.

The character-string fetch operation provides a value whose data type is 
the related character-string data type for the picture. It can never be invalid 
or cause a condition to occur.

THE ARITHMETIC INTERPRETATION OF PICTURED STORAGE

The arithmetic interpretation of a pictured storage unit 
of a related arithmetic data type. Once the related 
arithmetic operations for assignment and fetching can be

requires the definition 
type is determined, the 
defined.

Related Arithmetic Data Types

The related arithmetic data type for a given picture attribute has one of 
the forms:

FIXED DEC IMAL(&,£)

FLOAT DECIMAL^)

where jd and £ are determined from the given picture 
is used for a fixed-point picture and the second, for

attribute. The first form 
a floating-point picture.

For a f i xed-po i nt picture, 
fo11ows:

the related precision attribute is dete rm i ned as

is the number of digit indicators in the entire picture.

is the number of digit indicators to the right of the V indicator 
minus the value given by the scale-factor indicator. If there is no V 
indicator in the picture, it is assumed to be at the right end of the 
picture. If there is no scale-factor indicator in the picture, it is 
assumed to be F(0).

As an example, consider the picture attribute:

PI C”S999V.99F(-2 ) "

This picture has the related arithmetic data type:

FIXED DECIMAL(5,4)

The value p=5 was obtained by ignoring the S indicator, counting the three 9 
indicators, ignoring the V. indicators, counting the two 9 indicators and 
ignoring the scale-factor indicator. The value q=U was obtained by counting the 
two 9 indicators after the V indicator and then subtracting the value given by 
the scale-factor indicator, -2.
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For a f1oa t i ng-point picture, the related precision attribute is determined 
as foilows:

p is the number of digit indicators in the mantissa of the picture; that 
is, before the E or K indicator.

As an example, consider the picture attribute:

PIC”S9 V.9999 ES99”

This picture has the related arithmetic data type:

FLOAT DECIMALS)

The value p=5 was obtained by ignoring the S indicator, counting the 9 
indicator, ignoring the V. indicator, counting the four 9 indicators, and 
ignoring the E indicator and everything after it.

Arithmetic Assignments

The arithmetic assignment operation occurs when an arithmetic or bit-string 
value is assigned to a numeric pictured storage unit. Before the arithmetic 
assignment operation begins, the given value is converted to the related 
arithmetic data type for the pictured storage unit. During, the conversion, a 
cond i t i on may occur to report that the assigned value is out of range; also, the 
rightmost digits may be truncated or rounded off if the related arithmetic data 
type cannot accommodate them. The conversion operation is not part of the 
assignment operation, and is covered later, in the section on "Value 
Convers i on".

Because of the way the related arithmetic data type is determined, the 
converted arithmetic value has exactly the number of digits that are required by 
the picture. Other parts of the pictured value are determined by the indicators 
in the picture, in accordance with the detailed definitions given later in this 
section. The result of the assignment operation is a character sequence that is 
placed in the pictured storage unit.

A simple example of the assignment of an arithmetic value to a pictured 
storage unit follows. Suppose the variable X has been declared as follows:

DCL X PIC"$99S";

and suppose the following assignment statement is executed:

X = 3;

The related arithmetic data type for the given picture is:

DEC(2)

Before the assignment operation can begin, the given value must be converted to 
the related arithmetic data type; the result is:

+ 03.
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The value is shown in the representation that is used to store a DEC(2) value. 
Now the assignment operation can begin. The picture is examined from left to 
right, and each indicator is processed as follows:

The first indicator is 
must appear at this 
first character is $.

$. This 
po i n t in

indicator means that
the character string.

a dollar sign
Therefore, the

The second indicator is 9. This means that a decimal digit must 
appear, and the first digit of the converted given value is used. 
Therefore the second character is 0.

The third indicator is 9. This means, again, that a decimal digit 
must appear, and the second digit of the converted given value is 
used. Therefore the third character is 3.

The fourth indicator is S. 
the sign of the converted 
character is + .

This means that the sign must appear, and 
given value is used. Therefore the fourth

The resulting character sequence

and this is the value that is placed in the pictured storage unit named X.

Ar i thmet i c Fetches

The arithmetic fetch operation occurs when the value of a numeric pictured 
storage unit is fetched in a context that requires an arithmetic or bit-string 
value. After the fetch is complete, some conversion of the arithmetic result 
may be required; but this conversion is not part of the fetch operation.

The arithmetic fetch operation is the inverse of the assignment operation. 
That is, if a given arithmetic value is assigned to a pictured storage unit, 
then a subsequent fetch operation will obtain exactly the value that was 
as s i gned »

A simple example of the fetching of an arithmetic value from a pictured 
storage unit follows. The example is parallel to the example just given, in the 
discussion of assignment. Suppose the variable X has been declared as follows:

DCL X PIC”$99S”;

and suppose that X appears in a context that requires an arithmetic value, such 
as the expression:

X+l

The related data type for the given picture is:

DEC(2 )

Let the current value of X be the character sequence:

$03 +
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In order to fetch the arithmetic value of the storage unit, the picture is 
examined from left to right, and each indicator is interpreted as follows:

2.

The first indicator is $. This indicator makes no contribution to the 
arithmetic interpretation and is ignored.

The second indicator is 9. This indicator contributes a digit to the 
arithmetic interpretation. Therefore, the first digit of the 
arithmetic interpretation is 0.

The third indicator is 9. This indicator also contributes a digit to 
the arithmetic interpretation. Therefore, the second digit of the 
arithmetic interpretation is 3.

The fourth indicator is S. This indicator contributes the sign for 
the arithmetic interpretation. Therefore, the sign of the arithmetic 
i nterpretation is +.

The resulting arithmetic value is:

+ 03.

which is the correct representation for a DEC(2) value.

Fixed-Point Pictures

There are many kinds of fixed-point 
picture can be constructed in three steps

pictures. However,
as foilows:

any f ixed-point

2.

Start with a sequence of one or more 9 indicators. (The 9 indicator 
is called the no-suppress i on digit i nd i ca tor, and means that a digit 
must appear in the corresponding position of the character-string 
value.)

Optionally, insert any decima 1 -point, sign, dollar, or 
insertion-character indicators. Certain restrictions on the way these 
indicators are used must be observed; for example, a dollar indicator 
must be at the beginning or end of the sequence, not between two 9 
indicators.

Optionally, choose a zero-suppression, drifting-sign, or 
drifting-do11 ar indicator and, proceeding from left to right, replace 
one or more of the 9 indicators in the picture. Restrictions on the 
choice of the new indicator must be observed; for example, a drifting- 
do 1 1 a r indicator can be used only if the leftmost 9 is immediately 
preceded by a dollar indicator.

These three steps could be carried out with pencil and paper as an exercise; 
however, they are presented here as a convenient form of definition for the 
fixed-point pictures. The various restrictions mentioned in Steps 2 and 3 are 
given later, in the descriptions of each of the indicators.
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An example of the construction of a picture according to the steps just 
given is:

9999
S99V.99
$$$V.99

Here, a sequence of four 9 indicators was created by Step 1; than a dollar 
indicator and a decima 1 -point indicator were inserted by Step 2; and finally a 
drifting-do11 ar digit indicator was chosen to replace some leading 9 indicators 
(two of them). A second example is:

999
999
ZZZ

Here, the optional Step 2 was skipped and the Z zero-suppr ess i on indicator was 
chosen to replace some leftmost 9 indicators (all three of them).

Once a valid fixed-point picture has been constructed, its interpretation 
must be determined; that is, the assignment and fetch operations must be 
defined. Most of the interpretation can be expressed in terms of the individual 
indicators that appear in the picture. However, there is one rule that pertains 
to the picture as a whole:

If a zero value is assigned to a fixed-point picture that 
does not contain a 9 indicator, then the entire character 
string becomes a sequence of b (blank) characters (if the 
suppression was not by a * indicator) or a sequence of * 
characters (if suppression was by the * indicator).

For example, if the picture attribute is:

PIC"$ZZV.ZZS"

and the value is zero, then the character-string value is not

”$bb.bb+”

which is the result of suppressing zeros, but rather is

"bbb^bbb”

which is the, result of setting al 1 characters to blanks.

THE NO-SUPPRESSION DIGIT INDICATOR

The most basic of all the indicators is the no-suppression digit i nd i cator, 
which is defined as follows:

9 means that a decimal digit must appear in the corresponding position 
of the character-string value. In the arithmetic interpretation, the 
corresponding digit is interpreted as a part of a decimal number.

The name "no-suppression digit indicator" means that this indicator specifies a 
digit that is never suppressed (replaced by a blank when it is zero).
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An example of a pictured attribute 
i ndi cator is:

that uses the no-suppression digit

declared with the given picture attribute:

Attribute

PI C"999"

Ass i gned

180
2
13.99
1000 
-22

Char Type and Value Ar i th Type and Va1ue

CHAR(3) "180"
"002”
"013”
(undef i ned)
(undef i ned)

DEC(3) + 180.
+ 002.
+ 013.
(undef i ned)
(undef i ned)

For this set of examples, it is assumed that some variable, say X, has been

DCL X PIC,,999";

For each line of the example, it is assumed that a value has been assigned to X. 
For the first line, the assignment is:

X = 180;

Each line gives the data type and value for two contexts. The 
Type and Value” applies when the variable is referenced 
requires a character-string value. The entry under ”Arith 
applies for any other context; that is, when the variable 
context that requires an arithmetic or bit-string value.

entry under ’’Char 
in a context that 
Type and Value” 
s referenced i n a

The assignment of 2 to the variable shows that leading zeros are preserved 
in the character string value when 9 indicators are used. The last three 
examples illustrate three ways in which a value can be arithmetically modified 
by assignment to a pictured storage unit:

When the assigned value has more accuracy than provided for by the 
picture (as in the case of 13.99), the low-order digits are dropped 
wi thou t round i ng. Although the absence of rounding is not always 
acceptable, this value modification is thought of as an approximation 
rather than an error; and no exceptional condition occurs when such an 
assignment is performed.

When the assigned value is too big for the picture (as in the case of 
1000), the value assigned to the storage unit is undefined. This 
value modification is, of course, an error and the SIZE condition 
occurs. Usually a SIZE condition terminates program execution, but 
recovery from the error is described in the section on "Condition 
Hand ling”.

When the assigned value is negative and the picture does not have a 
sign indicator (as in the case of -22), then the value assigned to the 
storage unit is undefined, and the SIZE condition occurs to indicate 
an error.
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THE DECIMAL-POINT INDICATOR

The decima 1 -po i n t indicator is made up of two characters, and is defined as
fol lows:

V. means that if there is no scale-factor in the picture then the decimal 
point appears at this position, both in the character-string and the 
arithmetic value of the pictured storage unit.

The V. indicator can appear no more than once and, except for intervening 
insertion-character indicators (described later), the indicator must be adjacent 
to a digit indicator. For the rare case that there is a scale-factor in the 
picture, see the definition of the a r i thmet i c decima 1 -point indicator, given 
later.

An example of a picture that makes use of a decima 1 -point indicator

Attribute Ass i gned

PIC”999V.99" 500.98
16
0

6.839
1500.98
-1

Char Type and Value

CHAR(6) ”500.98”
”016.00”
”000.00”

”006.83”
(undef i ned)
(undef i ned)

Ar i th Type and Vaiue

DEC( 5, 2) +500.98
+016.00
+000.00

+006.83
(undef i ned)
(undef i ned)

The last three assignments illustrate again the three kinds of arithmetic value 
modifications mentioned under ”The No-Suppression Digit Indicator”. Replicators 
could have been used in the picture in any of the following ways:

PI C"(3)9V.(2 ) 9" PIC”(3)9V.99” PIC”999V.(2)9”

use of the decima 1 -pointA second example of the

Attribute Ass i gned Char Type and Value Arith Type and Value

PIC”999V.” 180 CHAR(4) ”180.” DEC(5) +180

Here the effect of V. is to make the decimal point in the character string 
explicit; it could be omitted without changing the arithmetic value. Compare 
this example to the first line in the examples for "The No-Suppression Digit 
I nd i cator”.

Each of the two characters that make up the decima 1 -point indicator is, 
itself, an indicator. The V is the a r i thmet i c decima 1 -point indicator and the., 
is one of the insertion-character indicators. The separate use of V and . js 
rare, but their definitions are included, for completeness, later in this 
section.
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THE SIGN INDICATORS

A picture can contain a si gn indicator.
fol lows:

The sign indicators are defined as

S means that + or - must appear in the corresponding character position. 
In the arithmetic interpretation, the characters + and - mean the 
value is positive or negative, respectively.

means that a + or a blank must appear in the corresponding character 
position. In the arithmetic interpretation, the characters + or blank 
mean the value is positive or negative, respectively.

means that a blank or a - must appear in the corresponding character 
position. In the arithmetic interpretation, the characters blank or - 
mean the value is positive or negative, respectively.

CR means that 
character 
blanks or

two blanks 
pos i t i ons. 

CR mean the

or CR
For

value

must appear in the corresponding 
the arithmetic interpretation, the 

is positive or negative, respectively.

two
two

DB means that 
character 
b1anks or

two blanks 
pos i t i ons. 

DB mean the

or DB
For 

value

must appear in the corresponding 
the arithmetic interpretation, the 

is positive or negative, respectively.

two 
two

Only one sign indicator can occur in a fixed-point picture. Any one of the 
indicators

can occur before the first digit indicator i n the picture; th i s 1ead i ng pos i t i on
is in accord with the common usage of signs.

S + - CR DB

Any one of the indicators

can occur after the last 
usage.

digit i nd i cator; this is in accord wi th some business

Examples of the use of a sign indicator at the beginning of a picture ar e:

Attribute Ass i gned Char Type and Vaiue Ari th Type and Value

PIC "S999" 82 
0 
-82

CHAR(U) "+082"
"+000"
"-082"

DEC(3) + 082. 
+ 000 . 
-082 .

PIC”+999” 82 
0 
-82

CHAR(U) "+082"
"+000"
"16082"

DECC3) + 082.
+ 000. 
-082.

PIC”-999" 82 
0 
-82

CHAR(4) "16082"
"16000"
"-082"

DECO) + 082.
+ 000.
-08 2.

Two of 
negat i ve 
(second 
and the

these ass 
value to a 
pi cture, 

use of the

i gnments are of 
variable with a +

third ass i gnmen t); 
+ indicator is not

particular interest. The assignment of a 
sign indicator gives a blank for the sign 
this is not a common handling of the sign, 
recommended. In contrast, the assignment

of a number to a variable with the - indicator (third picture) follows the 
familiar conventions for the sign, and the use of the - is a useful alternative 
to the S i nd i cator.
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Examples of the use of a sign indicator at the end of a picture are:

Attr i bute Ass i gned Char Type and Value Arith Type and Value

PlC"99V.99S" 5
-5

CHAR(6) "05.00+"
"05.00-"

DEC(4, 2) +05.00
-05.00

PIC"99V.99+" 5
-5

CHAR(6) "05.00+"
"05.000"

DEC(4Z 2) +05.00
-05.00

PIC"99V.99-" 5
-5

CHAR(6) "05.000"
"05.00-"

DEC(4, 2) +05.00
-05.00

PIC"99V.99CR" 5
-5

CHAR(7) "05.0000"
"05.00CR"

DEC(4, 2) +05.00
-05.00

PIC"99V.99DB" 5 
-5

CHAR(7) "05.0000"
"05.00DB"

DEC(4, 2) +05.00
-05.00

As before, the + indicator behaves contrary to familiar conventions. The CR
(credit) and DB (deb it) i nd icators are designed especially for business
programming and behave in accordance with accounting convent i ons.

THE DOLLAR INDICATOR

A picture can contain a do 11 a r i nd i ca to r, which is defined as follows:

$ means that a $ must appear in the corresponding position of the 
character-string value. In the arithmetic interpretation, the
indicator is ignored.

A dollar indicator can occur in either of two ways in a fixed-point picture. 
First, it can appear anywhere before the first digit position. Second, it can 
occur anywhere after the last digit position and before a CR, DB, S, +, or 
indicator (if there is one).

Examples of the use of the dollar indicator are:

AttributeV Ass i gned Char Type and Value Arith Type and Value

PIC"$999V.99" 20

PIC"999V.$DB -478

CHAR(7) "$020.00" DEC(5,2) +020.00

CHAR(7) "478.$DB" DEC(3) -478.
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THE ZERO-SUPPRESSION DIGIT INDICATORS

A fixed-point picture can contain zero-suppress i on digit i nd i cators, which 
are defined as follows:

Z means that a decimal digit or a blank occurs in the corresponding 
position of the string value. The blank occurs if the character would 
be a leading zero; otherwise/ a decimal digit occurs. In the 
arithmetic interpretation, a blank that corresponds to the indicator 
is interpreted as a zero.

* means that a decimal digit or a * occurs in the corresponding
position. The definition is parallel to that for Z.

Y means that a decimal digit or a blank occurs in the corres ponding
position of the string value. The blank occurs if the corresponding 
character would be zero (regardless of whether or not it would be a 
1ead i ng zero). In the arithmetic interpretation, a blank that 
corresponds to the indicator is interpreted as a zero.

A 1ead i ng zero is a digit that is a zero, is not preceded by a nonzero digit, 
and (less obviously) is to the left of a decima 1 -point indicator, V. or V, if a 
decima 1 -point indicator appears.

Each of these zero-suppression digit indicators can be used as an 
alternative to a no-suppression digit indicator, 9, in a fixed-point picture. 
The first two indicators are subject to the following restrictions:

The Z indicators in a picture must not be preceded by any other kind 
of digit indicator; similarly, the * indicators must not be preceded 
by any other kind of digit indicator.

If a Z indicator is used to the right of a V. or V indicator, then all 
digit indicators in the fixed-point picture must be Z indicators. 
Similarly, if a * is used to the right of a V. or V, then all digit 
indicators must be * indicators.

These restrictions can be illustrated by considering the following picture:

PIC"S99V.99"

The only valid pictures that have the same pattern of digit indicators but use Z 
or * are:

PIC"SZ9V.99"
PIC”SZZV.99”
PI C'SZZV.ZZ"

PIC"S*9V.99"
PIC’’S**V.99"
PIC"S**V.**”
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Examples of the suppression of leading zeros by means of the Z indicator
are:

indicator

Attribute Ass i gned Char Type and Value Arith Type and Value

PlC"-ZZV.ZZ" -12.18 CHAR(6) "-12.18" DEC(4,2) -12.18
-2.18 "-J62.18" -02.18
-0.18 "-J6J6.18" -00.18
-0.08 "-J6J6.08" -00.08
-0.00 "J6J6J6J6J6J6" +00.00

PI C-Z9V.99" -0.18 CHARC6) "-J60.18" DEC(4,2) -00.18
-0.00 " + I60.00" +00.00

Observe that, in the last assignment for the first picture, all of the digits
are suppressed and therefore* the entire string value is blank.

Examples of the suppression of leading zeros by means of the * 
are:

At t r i bute

PI C ” $ * * V .* * ”

Ass i gned

56.20 
0.03 
0

Char Type and Value

CHAR(6) ”$56.20” 
"$** . 03” 
11 ******”

Ar i th Type

DEC(4,2)

and Value

+56.20
+00.03
+00.00

Examples of the suppression of zeros by means of the Y indicator are:

Attribute Ass i gned

PIC”99Y99” 44444
44044 
5

PIC”YYY99” 10000

Char Type and Value

CHAR(5) ”44444” 
” 4 4J6 4 4” 
"00)605”

CHAR(5) "W0G"

Arith Type and Value

DECC5) +44444.
+44044.
+00005.

DEC(5) +10000.

THE DRIFTING-SIGN DIGIT INDICATORS

A fixed-point picture can contain d r i ft i ng-s i gn digit indicators, which are 
def i ned as foilows:

has the same meaning as Z, except that it indicates that the sign (+ 
or -) must be moved to the right over a suppressed leading zero.

the same meaning as Z, except that 
blank) must be moved to the right

it indicates that the sign (+ 
over a suppressed leading zero.

has the same meaning as Z, except that 
(blank or -) must be moved to the 
ze ro.

it indicates that the sign 
right over a suppressed leading

When a sequence of S indicators appears in a picture, the leftmost one is 
interpreted as a s i gn i nd i cator and the remaining ones are interpreted as 
drifting-sign digit indicators. The same interpretation is applied to a 
sequence of + or - indicators. Drifting-sign digit indicators are subject to 
the same restrictions as the Z zero-suppression indicator.
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Some examples of the use of drifting-sign digit indicators are:

just given are similar to the following:

Attr i bu te Ass i gned Char Type and Value Ar i th Type and Value

PlC"SSS9V.99" -180.39
-.39

CHAR(7) "-180.59"
"1616-0. 39"

DEC(5, 2) -180.39
-000.39

PIC"------- V.--" -180.39
-.39
-.09
-0

CHAR(7) "-180.39"
"|6|6|6-. 39"
"I6I6I6-. 09"
"|6|6|6|6|6|6|6"

DEC(5, 2) -180.39
-000.39
-000.09
+000.00

The two attributes

PI C,,SZZ9V.99"

PIC”-ZZZV.ZZ”

The only difference is in the placement of the character that represents the 
sign. When drifting-sign digit indicators are used, the sign character occupies 
the position of the rightmost suppressed leading zero. When the Z indicator is 
used, the sign character remains at the position specified by the sign indicator 
and (in these examples) is the first character.

THE DR I FT ING-DOLLAR DIGIT INDICATOR

A fixed-point picture can contain d r i f t i ng-do 11 a r digit indicators/ defined 
as foilows:

$ has the same meaning as Z, except that it indicates that the dollar 
character must be moved to the right over a suppressed leading zero.

When a sequence of $ indicators appears in a picture, the leftmost one is 
interpreted as a do 11 a r i nd i cato r and the remaining ones are interpreted as 
drifting-dol1 ar digit indicators. Drifting-do11 ar digit indicators are subject 
to the same restrictions as the Z zero-suppression indicators.

Some examples of the use of drifting-do11 ar digit indicators are:

Attribute

PIC"$$$9V.99"

Ass i gned Char Type and Value Ar i th Type and Value

200 CHAR(7) "$200.00" DEC(5,2) +200.00
.03 "|6|6$O. 03" +000.03
0 "|6|6$O. 00" +000.00

PIC"$$$$V.$$" 200 CHAR(7) "$200.00" DEC(5, 2) +200.00
.03 "|6|6|6$. 03" +000.03
0 "|6161616161616" +000.00
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THE INSERTION-CHARACTER INDICATORS

A picture can contain ins er t i on-character i nd i cators, which are defined as 
fol lows:

means that a peripd must appear in the corresponding character 
position unless zero suppression applies.

/ means 
unless

that a 
zero

comma must 
su ppr ess i on

appear in 
app1i es.

the correspond!ng cha r acter pos i t i o n

1 means 
unless

that a 
zero

slash must 
suppression

appear i 
app1i es.

n the co r r es pond i ng character pos i t i o n

B means 
unless 
letter

that a 
zero 

B but

b1ank must appear i 
suppr ess i on app1i 
it inserts a blank

n the corresponding character posi 
es. Observe that the indicator is 
character.

t i on 
the

In the arithmetic interpretation of a pictured storage unit, all insertion 
characters are ignored. There is no restriction on the way insertion characters 
are placed in a picture.

The definitions just given refer to the possibility that zero suppression 
applies to an insertion character, and that possibility is now described. An 
insertion character is suppressed when it immediately follows a suppressed digit 
or another suppressed insertion character; however, no suppression occurs to the 
right of a V indicator. The effect of suppression is the same as for a digit; 
that is, the insertion character is replaced by a * or a blank, depending on 
whether the indicator that caused the neighboring zero suppression was a * or 
some other indicator.

Some examples of 
fol low:

pictures that contain insertion-character indicators

Attribute Ass i gned Char Type and Value Ar i th Type! and Value

PlC"$9, 999V.99" 1529.09 
529.09 
.09 
0

CHAR(9) "$1,529.09" 
"$0z529.09" 
"$0,000.09" 
"$0z 000.00"

DEC(6,2) +1529.09
+0529.09
+0000.09
+0000.00

PIC"$Zz ZZZV.ZZ" 1529.09 
529.09 
. 09 
0

CHAR(9) "1,529.09" 
"$00529.09" 
"$00000.09" 
"000000000"

DEC(6Z2) +1529.09 
+0529.09 
+0000.09 
+0000.00

PIC"$$z $ $ $ V . $ $ ” 1529.09
529.09
. 09
0

CHAR(9) "$lz529.09" 
"00$529.09" 
"00000$.09" 
"000000000"

DEC(6Z 2) +1529.09 
+0529.09 
+0000.09 
+0000.00
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Each picture uses two insertion-character indicators: one comma and one period. 
The examples have the following features:

Since the only digit indicators in the first 
no zero suppression occurs. Since no zero 
insertion characters are never suppressed.

picture are 9 indicators, 
suppression occurs, the

In the second and third pictures, zero suppression occurs, 
first digit is zero, it is suppressed and, as a result, the 
follows is also suppressed.

When the 
comma that

The period insertion character is never suppressed because 
to the right of the V indicator. The V indicator 
suppression and therefore also stops suppression of 
cha r acters.

i t appear s 
stops zero 
insertion

When zero is assigned to the second or third picture, the entire 
character string is suppressed; this occurs because all of the digit 
indicators are zero-suppression indicators. However, it is not 
considered to be a part of the process of suppression of leading
zeros.

In this example, the period is discussed as an insertion character; earlier, in 
the discussion of the decima 1 -point indicator V., the period was considered to 
be a part of a two-character indicator. These two views are consistent with one 
another, as the discussion of the "Arithmetic Decima 1 -Point Indicator", given 
later in this section, will show.

Since there is no 
placed i n a pi ctu re, 
Examples are:

restriction on the way insertion-character 
a considerable variety of effects can

i ndi cators are 
be achieved.

Attribute Ass i gned Char Type and Value Ar i th Type and Vai

PIC” 99/99/99" 12075 CHAR(8) "01/20/75" DEC(6) +012075.
PI C" 99.99.99" 12075 CHAR(8) "01.20.75" DEC(6) +012075.

PIC" 9,999,999" 1234567 CHAR(9) "1,234,567" DEC(7) +1234567.
PIC" 9B999B999" 1234567 CHAR(9) "102340567" D EC(7) +1234567.

PIC" 999BB9/9" 51034 CHAR(8) "510003/4" DEC(5) +51034.

The purpose of the insertion characters is to permit various special notations 
for values. Insertion characters should be used conservatively, and tricks 
should be avoided. The last example, which presumably converts an assigned 
integer into a three-digit .integer and a fraction, is the sort of trick that 
should be avoided.

THE ARITHMETIC DEC IMAL-POI NT INDICATOR

A fixed-point picture 
which is defined as follows:

can contain an a r i thmgti c dec i ma 1 -po int indicate r,

V does not have a corresponding character position and thus does not 
contribute a character to the character-string value. In the 
arithmetic interpretation, the indicator determines the position of 
the dec i ma 1 po i nt.
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The V indicator can occur no more than once in a picture and, except for 
intervening insertion-character indicators, it must be adjacent to a digit 
indicator. Usually the V indicator is used in conjunction with the 
insertion-character indicator and the pair is thought of as a single indicator 
as described earlier under "The Decima 1 -Point Indicator”.

The V indicator is used separately in order to cause the automatic 
values that are assigned to a pictured storage unit. Examples are:

scaling

Attribute Ass i gned Char Type and Value A r i th T y p e and Value

PIC"999V99" 180.98 CHAR(5) "18098" DEC(5, 2) +180.98

PIC"999.99" 180.98 CHAR(6) "001.80" DEC(5, 0) +00180.

P1C"9.99V99" 180.98 CHAR(6) "1.8098" DEC(5, 2) +180.98

In each of these examples, the character-string value represents a different 
number than the arithmetic value.

THE SCALE-FACTOR INDICATOR

A f i xed-po i nt 
defined as follows:

picture can end with a sca1e-factor indicator, which is

F(.n) does not have corresponding character positions and, therefore, does 
not affect the related character type of a pictured storage unit. In 
the arithmetic interpretation, it adds n to the scale factor implied 
by the picture. The arithmetic value of a picture is 10**n. times the 
apparent value of the character string value of the picture.

Some examples of the use of the scale-factor indicator in a fixed-point picture 
are:

A11ri bu te Ass i gned Char Type and Value Ari th Type and Value

PlC"99V.999F(0)" 23 CHAR(6) "23.000" DEC(5, 3) +23.000

P 1 C"99 V . 999 F( 2 )" 700 CHARC6) "07.000" D EC(5, 1) +0700.0

PIC"99V.999F(-1)" .04 CHAR(6) "00.400" DEC(5, 4) +0.0400

The key to these examples is the fact that, for each of the three examples, the 
same sequence of digits appear in the character-string value and the arithmetic 
value. Once the related arithmetic data type has been correctly determined, it 
places the decimal point in the arithmetic value.
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Fl_o_at.i.ng-Poi nt Pi ctures

A floating-point picture is composed of a sequence of four parts, as 
fol 1 ows:

The man t issa, which can be any fixed-point picture that does not have 
a sign indicator after the digit indicators and does not have a dollar 
indicator.

2. A float i ng-poi nt i ndi cator, with E or K, as defined later.

The .exponent, which is a severely restricted fixed-point picture that 
begins with an optional sign indicator and has from one to three Z or 
9 digit i nd i cators.

4. An optional sea 1e-factor i nd i cator.

The floating-point indicator distinguishes a floating-point picture; that is, 
any picture that contains an E or K is necessarily a floating-point picture.

Most of the interpretation of a floating-point picture depends on the 
interpretation of the fixed-point pictures that are used as its mantissa and 
exponent. However, there are a few special rules:

• Unless the arithmetic value of the assigned value is zero, the 
exponent is chosen so that the first digit of the mantissa is not 
zero.

Before an arithmetic value is assigned to a pictured storage unit that 
does not have enough digits for an exact represent ation, the rightmost 
digits are dropped by rounding. This contrasts with the truncation 
without rounding that is used for a fixed-point picture, described 
earlier under "The No-Suppression Indicator”.

Examples of the application of these rules are:

Attr i bute Ass i gned

PIC”-9V. 999 ES99 "
-100
-.01
5.0025

Char Type and Value Arith Type and Value

CHAR(IO) FLOAT DEC(4)
"-1.000E+02" -0001.E + 2
"-1.000E-02” -0001.E-2
"+5.003E+00" +5003.E-3

THE FLOATING-POINT INDICATORS

A floating-point picture must contain one of the following indicators;

the

K does no t 
the

does not have a corresponding character position and thus 
contribute a character to the character-string value, 
arithmetic interpretation, the indicator is equivalent to E.

means that an E must appear in 
character-string value. In

the corresponding position of 
the arithmetic interpretation, 

separates the mantissa and the exponent.
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The following examples show the difference between the two kinds of 
floating-point indicators:

Attribute

FLOAT DEC(5) 
+00015.E0

CHAR(11)
” + l.5000E+01”

PIC”S9V.9999ES99”

FLOAT DEC(5) 
+00015.E0

CHAR(10)
” + l.5000+01”

PIC”S9V.9999KS99”

THE SCALE-FACTOR INDICATOR

A floating-point picture can end with a seale-factor i nd i ca to r, which is 
defined as follows:

F(n.) does not have co r r es pond i ng character positions and, therefore, does 
not affect the related character type of a pictured storage unit. The 
arithmetic value of a picture is 10**ri times the apparent value of the 
character string value of the picture.

Some examples of the use of the scale-factor indicator in a floating-point 
picture are:

Attribute Ass i gned Cha r Type and Value Ari th Type and Value

PIC”S9V.99ES99” 15 CHAR(9) ”+1.50E+01” FLOAT DEC(3) +015.E0

PIC”S9V.99ES99F(4)” 15 CHAR(9) "+1.50E-03" FLOAT DEC(3) +015.E0

PIC”S9V.99ES99F(-3)” 15 CHAR(9) ”+1.50E+04” FLOAT DEC(3)” +015.E0

Consider the second example. The arithmetic value 15 is assigned to the storage 
unit. It must be multiplied by 10**-n. to get the character. string 
repr es en tat i on; then when it is fetched as an arithmetic value and multiplied by 
10**n its value is the same as it was originally.

Comp 1 ex P i c tu r es
9

Pictured storage for a complex value is declared by combining any numeric 
picture attribute with the COMPLEX attribute. The effect of the COMPLEX 
attribute is to make the character-string value twice as long as the numeric 
picture requires, and to thus provide for the real and imaginary parts. The 
resulting character string is unfortunately different from other PL/I 
representations of a complex value because it does not have an I at the end of 
the imagi nary part.
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An example of the declaration of a pictured complex storage unit is:

Att r i bu tes

PIC”S9V.999ES99" COMPLEX

Ass i gned

3-2 I

Char Type and Value

CHARC20)
” + 3.000E+00-2.000E+00"

Arith Type and Value

COMPLEX FLOAT DEC(4) 
+0003.E0-0002.E0I

Non-Numeric Pictures

The design of a non-numeric picture is much simpler than that of a numeric 
picture. The non-numeric pictures are present so that a programmer can describe 
a storage unit that is designed to hold a character string and to have only a 
character-string interpretation. A non-numeric picture is an alternative to the 
use of the CHARACTER attribute.

THE NON-NUMERIC INDICATORS

A non-numeric picture is made up of any number of non-numeric indicators in 
any order; however, at least one X or A indicator must appear. The indicators 
are defined as follows:

X means any ASCII character can appear in the corresponding character 
pos i t i on.

A means that a letter (upper or lower case) or a blank must appear in 
the corresponding character position.

9 means that a digit or a blank must appear in the cor res ponding 
character position.

Observe that in a numeric picture a 9 specifies a digit only, while here, in a 
non-numeric picture, 9 specifies a digit or a blank.

Some examples of non-numeric pictures are:

Attribute Ass i gned Char Type and Value Arith Type and Value

PIC"XXXXX" "AB--3” CHAR(5) "AB--3" (not app1icab 1e)

PIC”AAXX9” "AB--3" ”AB--3" (not applicable)
CHAR(5) ’WtW’

”7B--3” (conversion)

The last line shows that an attempt to assign a digit to a position controlled 
by an A indicator causes the CONVERSION condition to occur. See the section on 
’’Condition Handling”, later in this manual.
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Guidelines for Pictured Storage

Pictured storage is ideal for programming applications in which the format 
and layout of input/output is important and calculations are relatively simple. 
Business programs often fit this description. Simple programs for teaching or 
one-shot execution also can make good use of pictured storage.

When a pictured variable is involved in complicated and repeated arithmetic 
calculations, some significant extra costs can accrue. The fetch of the 
arithmetic value of a pictured variable can be one or two orders of magnitude 
more costly than the fetch of the value of a similar arithmetic variable. In 
such a situation, there are four options:

® Accept the extra cost and keep the pictured variable. This is the 
approach often adopted in business programming, where the cost of 
input/output overshadows any computational costs.

• Keep the pictured variable, but introduce an arithmetic variable for
use in calculation. In this case, the pictured variable is used for 
input/output, the arithmetic variable is used in calculations, and the 
values are assigned back and forth between the two variables when 
necessary. This approach is especially useful when input/output is
performed in terms of records, as described later in the section on 
"Record Input/Output", rather than in terms of a stream.

® Drop the pictured variable, but use the picture format JLtgm in 
conjunction with edit-directed input/output, as described later in the 
section on "Stream Input/Output". This approach is similar to the 
previous one, except that the pictured variable is a system temporary 
that is controlled by the PL/I processor rather than the program.

• Drop the use of the picture entirely. In this case, input is 
controlled by some other mechanism of input/output, usually within the 
extensive facilities for stream input/output. This approach is often 
used in short scientific programs.

In a large program, all four of these approaches might appear as a result of the 
separate consideration of each variable. In that case, it becomes an advantage 
to have all of these options present in a single language.

ADDRESS STORAGE

PL/I permits an address to be treated as a data value. Although these 
values are not subject to calculation in the usual sense, they can be stored, 
fetched, compared with one another and, ultimately, used as addresses. ihe 
explicit manipulation of address values is an advanced feature of PL/I, and is 
not used at all in most applications of PL/I.
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Address values are discussed earlier in the section entitled "Values". 
There are six types of address values, as follows:

beginning of an area

1 abel The address 
statement

of a statement that can be the destination of a GOTO

entry The address of a statement that is an entry to a procedure

format The address of a FORMAT statement

po i n t e r The address of a storage unit, expressed as a full GCOS address

offset The address 1of a storage unit, expressed relative to the

file The address of a file-control block, which, in turn, gives access 
to a GCOS file.

For each of
storage unit.

these types of address values, there is a cor responding type of 
These storage units are described here.

A label, entry, or format address is a special kind of program address. It 
designates not only a certain statement of a program but also a particular 
activation of the block in which that statement appears. This feature is
significant only when a program is recursive; i t i s di scussed 1ater, i n the
section on "Procedure 1nvocat ion".

Address Attributes

The data type of an address 
following keywords;

storage unit is specified by one of the

LABEL 
ENTRY 
FORMAT 
POINTER 
OFFSET

Sometimes other keywords are used in close association with the data type 
attribute in the declaration of an address variable; however, those other 
keywords are not a part of the storage type. For example, consider:

DCL LI
DCL L2

LABEL LOCAL;
LABE L;

Here, the storage type of both LI and L2 is just LABEL. The keyword LOCAL is a 
usage attribute, and is not part of the storage type; its effect is described in 
the section on "Program Flow". As a second example, consider:

DCL Pl ENTRY(FLOAT);
DCL P2 ENTRYCCHAR(20), DIMC3) FIXED) RETURNS(CHAR(20));

Here, the storage type of both Pl and P2 is ENTRY. The remainder of the 
declarations is, again, information about the usage of the address variables.
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An Abb rev i at i on

One of the address data attributes can be abbreviated, as follows:

Keywo rd Abb rev i at i on

POINTER PTR

An Example of Address Storage

As an example, consider the variable START whose declaration is:

DCL START PTR;

The storage type of START is

POINTER

and its storage can be diagrammed as follows:

PTR
START L I

The data frame is shown as a single box, without any division into parts. A 
GCOS pointer is divided into several parts, but these details of structure are 
irrelevant from the point of view of PL/I.

AREA STORAGE

Area storage is used in connection with the PL/I facilities for storage 
management. In contrast to all other PL/I variables, a variable storage unit of 
type AREA is not used directly to store data; instead, it is a reservoir of 
storage that supplies storage for the allocation of other variables. The use of 
area storage is an advanced and specialized feature of PL/I, and many 
applications do not require area storage.

When an AREA variable is allocated, the program specifies only the number 
of words occupied by the variable. In its initial form, the AREA variable is 
empty. As execution of the program proceeds, variables are allocated within the 
area, are used, and are eventually freed. At some time after its last use, the 
AREA variable itself is freed. The allocation and freeing of variables is 
discussed in detail later, in the section on ’’Storage Management”.

When a variable is allocated within an AREA variable, some words of the 
AREA variable are occupied by the allocated variable; then, when the variable is 
freed, the words become available again. The PL/I processor automatically keeps 
data that shows which words are occupied at any time; this data is kept in the 
AREA variable itself, and thus uses up a portion of the storage occupied by the 
AREA variable. Thus an AREA variable is more than just a block of storage: it 
is a complete storage system that is embedded in a larger system.
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An important feature of an AREA variable is that it defines its own system 
of addresses; that is, the address of a variable that is allocated within an 
area can be expressed as an offset address relative to the first word of the 
area. When the contents of one AREA variable is copied into another AREA 
variable, the GCOS addresses of the variables contained in the area change, but 
the offset addresses relative to the area do not change. This feature of AREA 
variables is important wherever address variables are used in forming linked 
lists of data objects.

The AREA Attribute

The data type of an area storage unit has the following form:

AREA( as )

where as is the area size. The area size must be an extent; that is, it must 
have the form:

exp

exp REFER ref

where exp is an expression and ref is a reference. The first form is used in 
most cases; it must yield a value that can be converted to a FIXED BINARYC18) 
value. The second two forms are described later, in the sections on ’’Storage 
Management” and ’’Procedure Invocation”, respectively.

The value of the area size at the time 
number of words that are allocated for the 
just like any other variable; details are 
’’Storage Management”.

the area is allocated determines the 
area. An AREA variable is allocated 
given later, in the section on

The capacity of an AREA variable is always somewhat less than the area 
size; this is because a portion of the storage allocated for the area variable 
is used as the occupation record; that is, the data that shows which words of 
the area are in use and which are free. For example, consider the declaration:

DCL Al AREA(1000);

According to this declaration, the AREA variable Al occupies exactly 1000 words 
of GCOS storage. Suppose that many variables with the storage type

CHAR(UO) NONVARYING

must be allocated in Al. This character variable occupies 10 words of storage; 
however, it is not possible to allocate 100 such variables in Al because of the 
storage used by the occupation record. Appendix E of the PL/I User’s Guide 
gives information for determining the exact capacity of an AREA variable.
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A Def auIt Rule

The following default rule applies to the AREA attribute:

Qm i t ted I tem Defau 1 t

area size 1024

The use of this default is not recommended. The area size is an important 
parameter, and should be carefully selected and explicitly given.

An Example of Area Storage

As an example, consider the following declaration:

DCL M AREA(2*N);

Suppose N=4096 when AREA is allocated. Then the storage type of M is:

AREA(8192)

The area variable occupies 8192 GCOS words. As program execution proceeds, 
variables can be allocated, used, and freed within M. Suppose that, at a 
particular time in program execution, three variables with the following storage 
types are allocated to M:

DEC(5)
CHARC6)
FLOAT

At this time, M can be diagrammed as follows:

M ////////////// occupation record ///////////////
////////////////////////////////////////////////

173

213

245

S 9 9 9 9 9

X X X X X X

The number given to the left of each storage unit in the area is the word offset 
of the storage unit relative to the beginning of the area. The three variables 
shown in the diagram do not, of course, exhaust the capacity of the area.
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AGGREGATE STORAGE

It is often useful to gather together a set of scalar variables, arrange 
them in a sequence, and treat them as a single variable. Such a variable is an 
aggregate. There are two kinds of aggregate, the s tructu re and the array, and 
these types of variables are described here.

Once aggregates have been introduced, it is necessary to distinguish 
between a variable that is contained in another, larger variable and one that is 
not. A variable that is contained in an aggregate variable is a minor var i ab1e, 
and is said to be a component of the aggregate. A variable that is not 
contained in another variable is a major var i ab1e. Sometimes a major variable 
is called a level-one variable; that terminology arose from the way structures 
are declared. Many examples of major and minor variables are given in the? 
discussion that follows.

S tructures

A struc tu re var i able is a sequence of members. The structure itself has a 
name and, in addition, each of the members of the structure has its own name. 
When a program operates on the entire structure, the structure name alone is 
used as the reference. When a program operates on a member of the structure, 
both the structure name and the member name, separated by a period, are used as 
the reference. (Often the member name alone can be used, but that is just an 
abbreviation of the complete reference.)

Each member of a structure can have any storage type, 
structure could be declared that has an arithmetic scalar as its 
structure of string variables as its second member, and an array 
variables as its third member.

For example, a 
first member, a 
of arithmetic

LEVEL NUMBERS

The structure is the only part of the storage type that is not given by 
attributes; instead, it is given in quite a different way, by level numbers. 
The level number is written just before each name used in the declaration of a 
structure, whereas the attributes are written after the name. The level number 
of each member of a structure variable must be greater than the level number of 
the structure itself; that is how the hierarchy is indicated. It is recommended 
that a major variable have level number one, a member of a major variable have 
level number two, a member of a member should have level number three, and so 
on, to whatever depth is required.

For purpose of discussion, consider the following declaration of a 
s t ructure:

02
02

02

ALPHA DEC(5), 
BETA,
03 X CHAR(4),
03 Y CHAR(6), 
GAMMA(3) FLOAT;
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With the help of the level numbers, 01, 02, and 03, the PL/I processor can 
recognize that this statement is the declaration of nine variables, as follows. 
The first variable is designated by:

SI (designates the major structure variable)

The designators of the three members of SI are:

SI.ALPHA (designates a minor scalar variable)
SI.BETA (designates a minor structure variable)
SI.GAMMA (designates a minor array variable)

The designators of the two members of SI.BETA are:

SI.BETA.X
SI.BETA.Y

(designates a minor scalar variable)
(designates a minor scalar variable)

The designators of the three elements of SI.GAMMA are:

S1.GAMMA(1)
S1.GAMMA(2)
S1.GAMMA( 3)

(des i gnates a 
(des i gna tes a 
(des i gnates a

minor sea 1 ar 
minor scalar 
minor scalar

variable) 
variable) 
var i able)

Observe that this example is rather general; it shows how a member of a
structure can be a scalar, a structure, or 
anticipates the description of arrays 
however, the array SI.GAMMA is a simple 
obv i ous.)

an array. (The use of an array here 
that appears later in this section; 
one, and its treatment should be

Two points of programming style arise
s tructures.

in connection with the declaration of

First, although the PL/I processor rel 
determine the structure, a programmer 
declaration. Therefore, the indentation 
statement should be used.

ies upon level numbers to 
relies upon the layout of the 
shown in the example DECLARE

Second, although the PL/I processor does not require a leading zero on 
a level number, the use of such a zero adds emphasis and distinguishes 
the level number from a computational constant.

STRUCTURE STORAGE TYPES

The storage type of a structure is obtained from the declaration in three 
s teps:

1. Omit the name of the structure and the names of its members.

2. Normalize the level numbers.

3. Obtain the storage type of each member by appropriate methods, 
depending on whether the member is a scalar, a structure, or an array.

3-50 DE05



The levels of a structure are norma 1i zed by reducing them until the structure as 
a whole has level number one, the members of the structure each have level 
number two, and so on.

The members of a structure are arranged in storage in the order in which 
they appear in the declaration. Thus the order of the members of the structure 
SI is:

SI.ALPHA
SI.BETA
SI.GAMMA

Similarly, the order of the members of SI.BETA is:

SI.BETA.X
SI.BETA.Y

As an example of the determination of the storage type of a structure, 
consider SI.BETA as declared in the preceding description of level numbers. The 
declaration was given as:

02 BETA,
03 X CHAR(U),
03 Y CHAR(6)

Omission of the variable names gives:

02,
03 CHAR(A),
03 CHARC6)

Norma 1ization of the level numbers gives:

01,
02 CHAR(4),
02 CHAR(6)

This is the desired result: the storage type for SI.BETA.

EXAMPLES

As a detailed example of storage for a structure, consider once again the 
variable SI, which has been used throughout this discussion of structures. Its 
declaration is:

DCL 01 SI,
02 ALPHA DEC(5),
02 BETA,

03 X CHAR(L),
03 Y CHAR(6),

02 GAMMAC3) FLOAT;

3-51 DE05



This statement declares

Desi gnator

SI

SI.ALPHA

SI.BETA

SI.BETA.X

SI.BETA.Y

SI.GAMMA
Sl.GAMMAC1)
SI.GAMMA(2)
Sl.GAMMAC 3)

nine variables, and their storage types are as follows:

02, 03 CHAR(it), 
03 CHAR(6), 

02 FLOAT

D EC(5

01, 02 CHAR(U), 
02 CHARC6)

CHAR(A) ‘

CHAR(6) .

DIM(3) FLOAT
FLOAT
F LOAT / '
FLOAT -

The storage for SI can be diagrammed as follows:

SI .ALPHA

-- .BETA.X

-------------- ,y

-- .GAMMA(l)

---------------- (2)

---------------- (3)

S 9 9 9 9 9 
//////-■/

X X X X
II l / ! ! /II

X X X X X X 
"//////./"

Thus SI is made up of six scalar storage units. The arrangement of these 
storage units on six separate lines does not imply that theyoccupy six words of 
GCOS memory. The mapping of storage units into GCOS words is done according to 
rules that are given later in this section, when "Alignment is discussed. 
Because unused bits or bytes of storage are sometimes placed between the storage 
required for the storage units, the rules are not simple.
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As a second example, consider the variable ACCOUNT, declared as follows:

DCL 01 ACCOUNT,
02 NAME,

03 LAST CHAR(30) VAR,
03 MlDDLE CHAR(1),
03 FIRST CHARC20) VAR,
03 TITLE CHARC4) VAR,

02 NUMBER PIC”9999”,
02 ADDRESS,

03 STREET CHAR(30),
03 LOC,

04 CITY CHARC20),
04 STATE CHAR(2),
04 ZIP PIC"99999",

02 BALANCE PIC"$,$$$,$$9V.99",
02 CRED I T__L I M I T P I C"$, $ $ $, $ $ 9 V. 9 9 " ;

This example shows how a simple financial record for a member of an organization 
can be handled. The following observations apply:

The entire structure of 11 scalar components can be referred to by a 
single name, ACCOUNT. This reference is convenient when, for example, 
the structure is output as a record in a permanent file.

The entire name of the individual who has the account can be referred 
to by a single designator, ACCOUNT.NAME. This reference is convenient 
when, for example, a list of account holders must be prepared.

The title (Mr., Mrs., etc.) and the last name can be accessed 
individually by ACCOUNT.NAME.TI TLE and ACCOUNT.NAME.LAST. This 
reference is convenient when, for example, the greeting of a letter 
must be prepared.

These observations are intended to emphasize the fact that the components of a 
structure can be handled collectively or separately, according to the 
requirements of each operation. A complete description of references to 
structures is given later, in the section on ’’Expressions”.

Ar rays

An array var i ab1e is a sequence of e1 emen ts. The variable has a single 
name, and the individual elements are designated by giving the array name and a 
list of one or more subscripts. When an array variable is referenced in a 
program, general expressions can be given for the subscripts, and the specific 
subscript values are then determined each time the reference is evaluated. In 
this special way, data addresses can be calculated during program execution, and 
a single array reference can designate different elements at different times.

All elements of a given array have the same storage type. That storage 
type can specify a scalar or structure variable, but not an array variable. In 
other words, the storage type of an element of an array can specify any variable 
except an array. This restriction is not very serious because a problem that 
requires an array of arrays can always be revised to use a single, 
multi-dimensional array.
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An array variable is declared by means of a d i mens ion attribute. The 
DIMENSION attribute should be inserted just after the name of the variable. 
Consider the following declarations:

DCL Ml FLOAT;

DCL 01 M2,
02 A FIXED,
02 B CHAR(32) ;

These are declarations of a scalar variable and a structure variable, 
respectively. The first can be changed into a declaration of an array of. 
scalars by the addition of an appropriate DIMENSION attribute, and the second 
can be changed into an array of structures in the same way; thus:

DCL Ml DIMENSION(1:20) FLOAT;

DCL 01 M2 DIMENSION 1: 20),
02 A FIXED,
02 B CHAR(32);

The discussion of the DIMENSION attribute that follows gives the interpretation 
of these declarations and also gives the abbreviations and defaults that permit 
them to be written in shorter forms, namely:

DCL Ml(20) FLOAT;

DCL 01 M2(20), 
02 A FIXED, 
02 B CHAR(32);

THE DIMENSION ATTRIBUTE

The DIMENSION attribute has the following form:

DIMENSIONC bplist )

where bplist is the bound-pai r list, and is a sequence of one or more 
bound-paj rs separated by commas. The number of bound-pairs, is the 
dimensionali tv of the attribute; it determines how many subscript positions are 
associated with the array. For example, consider:

DCL- A D I MENS I 0N( 1: 8, J-1: 2* ( N+1)) FLOAT;

Accord i ng to this declaration, A has a d i mens i ona1i ty of two, and i t s
bound-pairs are 1:8 and J-1:2*(N+1).

The purpose of a bound-pair is to specify the range for a given subscript 
position. Each bound-pair has one of the forms:

lb : hb

*

where 1b and hb are the lower and h i gher bounds. The second form is described 
later, in the section on "Procedure Invocation". The bound-pair specifies that 
the subscript has the following sequence of values:

lb, lb+1, 1b+2, ..., hb
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Consider, again, the following example:

DCL A DI MENS I0N(1:8,J-l:2*(N+1)) FLOAT;

The DIMENSION attribute specifies
subscr i pt pos i t i on:

the following range of integers for the first

1, 2, 3, ..., 8

The second bound-pair of A depends 
evaluated when the array variable is 
when the array variable is referenced, 
the time of allocation. Then the attr 
the second subscript position:

on variables, and such variables are 
allocated or, if the variables are BASED,
Suppose the variables are J = 4 and N=2 at 

bute specifies the following range for

3, 4, 5, 6

It follows that the array named A is made up of 8*4 = 32 elements.

Each bound in a dimension attribute must be an extent, 
following forms:

which has one of the

exp

exp REFER

where exp is an expression and ref is a reference. The 
most cases; it must yield a value that can be converted to 
value. The second form is described later in the 
Management”.

first form is used in 
a FIXED BINARY(2U) 

section on ’’Storage

ABBREVIATIONS AND DEFAULTS

The keyword DIMENSION can be abbreviated in two ways, as foilows:

Keyword Abbrev i at i on

DIMENSION DIM

DIMENSION (omit the entire keyword DIMENSION if it
immediately follows the name of the 
variable being declared.)

Since recommended practice is to write the DIMENSION attribute just after the 
variable name, the keyword is usually omitted. For example, consider the 
decl ara t i on:

DCL C D I M ENS I ON(1:12,-S:1,1:3*M-2) FIXED;
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This declaration can be abbreviated as follows:

DCL C(1:12,-S:1,1:3*M-2) FIXED;

there are some circumstances in which the declared name is not given in the 
declaration, and then either the abbreviation DIM must be used or the dimension 
must be the first attribute. Consider the following declaration:

DCL P ENTRY(DIM(0:5) FIXED);

This declaration asserts that P is the name of a procedure that takes one 
argument which must be a one-dimensional array whose subscript runs from zero to 
five.

The lower bound can be omitted; in that case, its default value is one. 
That is, if hb is any valid h i gher bound, then the bound-pair;

1: hb.

can be writ ten as:

Lb

By means of this default, the declaration of C given in the preceding paragraph 
can be shortened to:

DCL C(12,-S:l,3*M-2) FIXED;

ARRAY STORAGE TYPES

The bound-pairs of the DIMENSION attribute in a storage type are 
no rma1i z ed. A normalized bound-pair is:

1 : Lb-lb + 1

where 1b and hb are the lower and upper bounds of the original, unnorma1ized, 
bound-pair. Observe that normalization of a bound-pair causes the lower extent 
to be 1 while leaving the difference between the lower and upper bounds 
unchanged.

As examples of the normalization 
arrays D and E, declared as follows:

of DIMENSION attributes, consider the

DCL D(5:N+l) FLOAT;

DCL E(2*I:2*I+3) FLOAT;

Suppose these arrays are allocated when N=7 and l=-l. Then the dimension 
a11 r i bu tes are:

Unnorma1i zed

D I M(5:8)

DI M(-2 : 1)

No rma1i z ed

DIM(1:4)

D I M(1:4 )
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The unnorma1i zed bound-pair determines the designators of the elements of each 
variable. The designators are:

D(5) D(6) D( 7) D(8)

E(-2) E(-l) E(0) E(l)

The norma 1i zed bound-pair determines the storage type 
therefore, both D and E have the same storage type, namely:

of each variable;

DIM(1:4) FLOAT

or, using the default for the lower bound:

DIM(4) FLOAT

Other examples of norma 1ization are given in the examples of array storage that 
follow the next paragraph.

The elements of an array are arranged in storage in left major order. 
Given the designators for two elements, the order in which they appear is 
determined by the leftmost subscript for which the elements differ. Consider 
the following declaration:

DCL B(1:10,0:1,1:3) FLOAT;

The order of the elements of B in storage is:

B(1,0,1) 
B(1,0,2) 
B(1,0,3) 
B(l,l,l) 
B( 1,1,2) 
B( 1,1,3) 
B(2,0,l) 
B(2,0,2) 
B( 2,0,3) 
B( 2,1, 1) 

... (and so on for 50 more elements)

Observe that B(l,0,l) precedes B(l,0,2) because the first two subscripts are the 
same and 1 comes before 2. Observe that B(l,l,2) precedes B(2,0,l) because the 
designators differ in their first subscript and 1 comes before 2.

EXAMPLES

As a first example of storage for an array, consider the variable Al, 
declared as follows:

DCL Al(0:2) FIXED DEC(5);

The storage type for Al is:

DIM(3) FIXED DEC(5)
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The storage for Al can be diagrammed as follows:

S 9 9 9 9 9
Al (0) LJL_L_LJ—LJ

S 9 9 9 9 9
- - ( 1) ///////

S 9 9 9 9 9
- - ( 2) ///////

Here, as with structures, the components may be separated by unused.bits or 
bytes of storage, and the amount of unused storage, if any, is determined by 
rules given later in this section, when "Alignment" is discussed.

As a second example, consider the following declaration of an array of 
structures:

DCL 01 A2C100),
02 CODEC2) PIC"999",
02 I DENT CHARC5);

The storage type for A2 is:

01 DIM(100),
02 DIMC2) PIC"999",
02 CHARC5);

The storage for A2 can be diagrammed as follows:

9 9 9
A2 (1).CODEC 1) PIC"/ / / /"

9 9 9
-------------------- (2) PIC"/ / / /"

X X X X X
---------  . I DENT "///// /"

9 9 9
-- (2).CODEC 1) PIC"/ / / /"

9 9 9
-------------------- (2) PIC"/ / / /"

X X X X X
---------  .I DENT "///// /"

... (and so on for 98 more elements)

As a third example, suppose an application requires a variable that is 
thought of as an array of arrays. Since an array of arrays is not permitted, 
the problem must be restated. The usual solution is to express the variable as 
a two-dimensional array, thus:

DCL A3(N,0:2) DECC 5) ;

Suppose N=2 when A3 is allocated. Then the storage type is:

DIM(2,3) DECC5)
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The storage for A3 can be diagrammed as follows:

S 9 9 9 9 9
A3 (1,0) ///////

S 9 9 9 9 9 
-- (1,D Z 7 _/ Illi

S 9 9 9 9 9
(2,0) ///////

S 9 9 9 9 9
-- (2,1) /_//////

S 9 9 9 9 9
-- (2,2) 77 II II !

Observe that the elements of A3 are arranged in left major order.

As a fourth example consider, once again, the problem of an array of 
arrays. The use of a two-dimensional array is the usual solution, but there is 
an alternative, as given by the following declaration:

DCL 01 A4(N),
02 X(0:2) DEC(5);

This declares an array of structures; each structure has a single member and 
that member is an array of scalars. Suppose, again, N=2 when A^ is allocated. 
Then the storage type is:

01 DIM(2),
02 D I M(3)

The storage for A4 can

DEC(5)

be diagrammed as follows:

S 9 9 9 9 9
A4 (l).X(0) ///////

$ 9 9 9 9 9
------------- (1) Z _/ _Z Illi

S 9 9 9 9 9
-------------- (2) LJ II II /

S 9 9 9 9 9
-- (2).X(0) / /__/ Illi

S 9 9 9 9 9
-------------- (1) / / II II i

S 9 9 9 9 9
-------------  (2) ///////

Observe the similarity of the storage diagrams for A3 and AU; only the 
designators differ.
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As a fifth and final example, consider the variable LIST, 
fol lows:

declared as

DCL 01 LIST,
02 COUNT FIXED,
02 ACCOUNTC1000),

03 NAME,
04 LAST CHAR(30) VAR,
04 MIDDLE CHAR(1),
04 FIRST CHARC20) VAR,
04 TITLE CHAR(4) VAR,

03 NUMBER PIC”9999”,
03 ADDRESS,

04 STREET CHAR(30),
04 LOC,

05 CITY CHARC20),
05 STATE CHAR(2),
05 ZIP PIC”99999”,

03 BALANCE PIC”$,$$$,$$9V.99”
03 CREDIT-BALANCE PIC"$,$$$,$$9V.99”;

This example picks up from the last example, ACCOUNT, that was given under 
”Structures”. The variable LIST provides for a maximum of 1000 accounts and 
also provides a variable, LIST.COUNT, to record the current number of accounts. 
Thus this single variable can provide the complete permanent record of the 
financial activity of the organization.

Guidelines for Aggregates

thebased primarily onThe choice between 
following considerations:

a structure

The data type of the members of a structure can differ from one 
another, whereas the elements of an array must all have the same data 
type .

The selection of a member of a structure must be made when the 
reference is written, whereas the selection of an element of an array 
can be performed, by the evaluation of subscript expressions, when the 
array reference is evaluated.

Often arrays and structures can be combined to provide a good organization for a 
complicated data object.

The most important efficiency consideration for aggregates arises in 
connection with the bounds in the declaration of an array variable. ^Ihen an 
array is declared with bounds that are all constants, references to the array 
may be an order of magnitude less expensive than when bounds are variable. iA/hen 
the programmer has a choice, he should use constant bounds.
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vVhen an array with a variable bound appears as a member of a structure, it 
should appear as late in the structure as possible. The same guideline applies 
to a CHARACTER or BIT string with a variable maximum length and to an AREA with 
a variable area size. Consider the following example:

DCL 01 Mem,
02 NAME(MAXCNT) CHAR(30), 
02 CNT FIXED;

This declaration does not conform to the guideline just given: the array with a 
variable bound comes first in the structure. A reference to NAME uses the base 
address of the structure; that creates no problem. However, a reference to CNT 
uses the base address of the structure plus the number of words occupied by 
NAME. Because NAME has a variable bound, the address of CNT cannot be 
calculated by the compiler; it must be calculated each time CNT is referenced 
during execution of the program. Now consider the following revision of the 
decl arat i on:

DCL 01 MEM,
02 CNT FIXED,
02 NAME(MAXCNT) CHAR(30);

This declaration does conform to the guideline. A reference to CNT uses the 
base address of the structure and a reference to NAME uses the base address of 
the structure plus the amount of storage (one word) occupied by CNT. Thus the 
addresses of both members of the structure can be calculated by the compiler.

ALIGNMENT

At the beginning of this section, it was observed that every variable has a 
data type, an aggregate type, and an alignment type. The data type and the 
aggregate type determine the values that can be accommodated by a storage unit. 
In contrast, the alignment type affects the way a variable is laid out in 
hardware storage; it has no effect on the types of values that can be 
accommodated by the storage unit. The alignment type is given as a single 
attribute, either ALIGNED or UNALIGNED.

As a simple example of alignment, consider the following declaration of an 
array of structures:

DCL 01 CELL(4096),
02 TYPE FIXED(2), 
02 CDR FIXED( 14), 
02 FLAGS BIT(3), 
02 CAR F I X ED(14) ;

Since no alignment attributes are given for the array, various alignments are 
assumed for the array, for each element of the array, and for each member of 
each element. The effect is that (for this particular example), each member 
occupies one word of GCOS storage, each element of the array occupies four 
words, and the entire array occupies 4*4096 words. In this form, the array 
occupies more storage than necessary; however, the contents of the array can be 
accessed efficiently.
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Now consider a slightly different declaration of the same array:

DCL 01 CELL(4096) UNALIGNED, 
02 TYPE F I XED( 2), 
02 CDR FIXED(14), 
02 FLAGS BIT(3), 
02 CAR F I XED( 14);

This array has exactly the same capacity as before, but it is laid out in a 
different way. According to the default rules, the UNALIGNED attribute given 
for CELL applies not only to the array but also to the elements and the members 
of the elements. As a result (for this example), the four members of each 
element are packed into a single word, so the entire array occupies just 4096 
words. In this form, the array occupies much less storage, but references to 
its components are slower.

In most cases, the alignment of variables can be ignored. PL/I has default 
conventions for alignment that usually provide satisfactory results. However, 
there are two circumstances under which alignment must be considered:

When the amount of storage occupied by a variable must be controlled, 
the alignment attribute is used. A change in alignment can cause a 
change of more than an order of magnitude in the storage required for 
a variable.

When the layout of a variable with respect to the words, bytes, and 
bits of storage must be controlled, the alignment attribute is used. 
The proper use of alignment attributes can place a member of a 
structure in any given field of a hardware word. Layout is important 
when data is prepared for communication with facilities that are 
outside of PL/I.

The following discussion gives the information necessary for the use of the 
alignment to control the amount and layout of storage for a variable. The 
alignment attribute is described in a way that is independent of the G CO o 
implementation of PL/I, and the abbreviations and defaults are given. The 
specific rules for the layout of a variable in GCOS storage are given in the 
GCOS PL/I User’s Guide.

The Alignment Attribute

The alignment attribute is one of the following keywords;

ALIGNED 
UNALIGNED

When a variable is ALIGNED, Its storage is laid out in a way that facilitates 
access; that is, extra storage is used, where necessary, to permit the use of 
fast hardware operations to fetch or store the value of the variable. When a 
variable is UNALIGNED, its storage is laid out in a way that uses relatively 
little s tor age.
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One way to facilitate access is to line up variables with word boundaries 
so that each variable occupies one or more full words; and that is the source of 
the keyword ALIGNED. One way to minimize the use of storage is to start each 
variable just where the last variable left off, so that, in some cases, a 
variable crosses word boundaries; and that is the source of the keyword 
UNALIGNED. The exact effect of the alignment attribute depends on a particular 
implementation of PL/I, and no more can be said of alignment in an 
imp1 emen tation-Independent way than what is said in the previous paragraph.

The alignment attribute is given in a DECLARE statement in the same way as 
other attributes; however, the alignment attribute for an array variable serves 
a double purpose. Consider the following examples:

DCL X(100) BlT(1) ALIGNED;

DCL 01 A( 3) UNAL,
02 Ml DEC( 5) UNAL,
02 M2 DEC(5) UNAL;

The alignment attribute on the first line of each of 
both to an array and to each of its elements. Thus 
of whose elements is an ALIGNED scalar variable; and 
each of whose elements is an UNALIGNED structure.

these statements applies 
X is an ALIGNED array, each 
A is an UNALIGNED array,

Abbreviations and Defaults

The alignment attribute has just one abbreviation, but it has an elaborate 
default convention that permits most alignments to be handled by default. The 
abbreviation is:

Keyword

UNALIGNED

Abb rev i at i on

UNAL

Now consider the default convention, 
not written explicitly in the declaration of 
in two steps, as follows:

'^hen the alignment of 
the variable, then it

a variable is 
is dete rmi ned

1. If the variable is contained in an aggregate variable that has an 
explicit alignment attribute, then the variable takes its alignment 
attribute from the smallest containing aggregate that has an explicit 
alignment attribute.
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2. Otherwise, the variable takes its alignment from the following default 
rules:

Storage Type Defau1t

sea 1 ar
ar i thme t i c 
string 
address 
area

ALIGNED 
UNALIGNED 
ALIGNED 
ALI GNED

aggregate 
s tructu re 
array

UNALIGNED 
(same as its elements)

The irregularity of the defaults in Step 2 reflects the intention of the 
designers of PL/I to provide the best choice for each case. For example, the 
use of ALIGNED arithmetic variables greatly increases the speed of calculations, 
whereas UNALIGNED string variables can save storage without much effect on the 
speed of access.

Some examples of this default convention follow. Consider the declaration:

DCL X FIXED;

This declaration
Step 1 of the 
aggregate. Step

has no explicit alignment attribute, so one 
default rule does not apply because X is

2 supplies the default ALIGNED.

must be supplied.
not con ta i ned i n an

As a second example, consider the

DCL 01 PAIR1 UNAL, 
02 I FIXED, 
02 J FIXED;

Step 1 of the default rule applies for 
as if the programmer had written:

following declaration of a structure:

both PAIR1.I and PAIR1.J. The result is

DCL 01 PAIR1 UNAL,
02 I FIXED UNAL,
02 J FIXED UNAL;

As a th i rd
with no a 1i gnment

examp 1e,
attribute

suppose that PAIR2 is declared in a similar way, but
at all, as foilows:

DCL 01 PAIR2,
02 I FIXED,
02 J FIXED;

Step 1 does not apply. According to Step 2, an equivalent declaration is:

DCL 01 PAIR2 UNAL,
02 I FIXED ALIGNED,
02 J FIXED ALIGNED;

Compare this example to the preceding example. Because PAIR2 is a structure, it 
is UNALIGNED by default; the two examples are the same in this respect. But the 
numbers I and J are handled differently because the alignment attribute of PAIR2 
is not explicit and Step 2 applies rather than Step 1.
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As a final example, consider the following declaration of a structure, 
which is chosen to illustrate a wide variety of defaults:

DCL 01 S,
02
02

02

SI BIT(3),
S2(500) ALIGNED, 
03 A PIC”S99V.99”, 
03 B CHAR(2) UNAL, 
03 C,

04 ALPHA CHARC2),
04 BETA DEC(5) UNAL, 

S3 FIXED;

The application of Rule 1 supplies some of the required ali 
with a result that is equivalent to the following declaration:

gnment attributes,

02

DCL 01 S, 
02 
02

A PIC”S99V.99” ALIGNED,
B CHARC2) UNAL,
C ALIGNED, 
04 ALPHA CHAR(2) ALIGNED 
04 BETA DEC(5) UNAL, 
FIXED;

S2(500) ALIGNED 
03 
03 
03

The application of Rule 2 completes the default alignments, with a result 
i s equi valent to:

DCL 01 S UNAL,
02 SI Bl T( 3) UNAL,
02 S2(500) ALIGNED,

03 A PIC”S99V.99” ALIGNED,
03 B CHAR(2) UNAL,
03 C ALIGNED,

04 ALPHA CHAR(2) ALIGNED,
04 BETA DEC(5) UNAL, 

02 S3 FIXED ALIGNED;

3-65 DE05



SECTION IV

VALUE CONVERSION

In many cases, a value cannot be placed in a storage unit as it is; 
instead, it must be represented in a form specified by the storage type of the 
storage unit. This adjustment of a value to a specified represen tat ion is the 
conversion of the value. The conversion operation is not necessarily simple; it 
may require that the given value be reinterpreted, approximated, truncated, or 
even rejected as unsuitable.

There are many storage types in PL/I; and if conversion from any type to 
any other type is allowed, then many kinds of conversion are required. The 
designers of PL/I did not seek to escape this consequence; they defined 
conversion wherever a reasonable definition could be devised. As a result, PL/I 
allows conversion between any types of compu tat i ona1 values, including some 
conversions that are not entirely obvious, such as that of an arithmetic value 
into a character-string value. On the other hand, PL/I does not allow most 
conversions that involve non-compu ta t i ona1 values; in fact, the only conversion 
of this kind allowed is that between the two types of locator values, POINTER 
and OFFSET.

The storage type consists of an aggregate type as well as a 
PL/I allows some conversions of aggregate type. For example, if 
is assigned to an array variable, the value is automatically 
array value before the assignment.

data type; and 
a scalar value 
converted to an

CONTEXTS THAT FORCE CONVERSION

In PL/'I, if a conversion from one storage type to another is required but 
is not explicitly indicated, the conversion is automatically performed. This 
automatic conversion makes a program look simpler than it really is, and it has 
both advantages and disadvantages. Certainly any means to shorten a program is 
welcome, but unpleasant surprises can occur when a programmer misunderstands the 
rules for automatic conversion.
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The conversion of a value is forced when it is assigned to a storage unit. 
The storage unit to which a value is assigned is the target, and the storage 
type of the target determines the kind of conversion performed. Sometimes the 
target is a variable name that has been explicitly declared in the program; in 
this case, its storage type is easily determined. In other cases, the target is 
a temporary storage unit provided by PL/I; and, in this case, the storage type 
is determined by special rules. In all cases the storage type of the target 
depends on the context of the computation. The ways in which context forces 
conversion are described at many places in this manual because they occur in 
many features of the language. An informal review of these contexts is given in 
the following paragraphs in order to show clearly the role of conversion in 
PL/ I .

General Contexts

There are a variety of contexts in which an expression is used in a general 
way, and in these contexts, the storage type of the target is virtually 
unrestricted. These contexts are discussed in the following paragraphs.

ASSIGNMENT STATEMENTS

The most fundamental context for conversion is the assignment statement.
For example, the statement:

(

X = V;

can imply any of the possible conversions of PL/I, depending on the storage type 
of the variables X and Y. The conversion can be a trifling matter, as in the 
case

DCL X FIXED DECIMALS, 2);
DCL Y FIXED DEC IMAL(7,2); 
• • «
X = Y;

Here, the only difference is that the target has one more high-order digit than 
the assigned value; and the conversion is always exact conversion. On the other 
hand, the conversion can be quite complicated, as in the case

DCL X(2,3) FIXED DEC I MAL(8,2);
DCL Y FLOAT BlNARY(25);

Here, the scale attribute must be converted from FLOAT to FIXED, the base 
attribute from BINARY to DECIMAL, the precision attribute from (25) to (8,2), 
and, most remarkable, the aggregate type from scalar to that for a 
two-dimensional array. Thus a small assignment statement can invoke a large 
conversion effort. A description of the assignment statement is given in the 
section on ‘’Value Assignment”.
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ASSIGNMENT-LIKE CONSTRUCTS

In several important contexts, an assignment statement is implied in a more 
or less obvious way. For example, the DO group

DO I = 1 TO 2;
Q( I ) = R( I ) ;
END;

i s equ i va1en t to

I = 1; 
Q( I ) =
I = 2; 
Q( I ) =

R( I ) ;

R( I ) ;

Thus the example DO statement has within it the equivalent of an assignment 
statement. A full description is given in the section on ’’Program Flow”.

There are a few other constructs that are closely related to the assignment 
statement. An INITIAL attribute assigns a value to a variable when the variable 
is allocated, as described in the section on "Storage Management”. A REFER 
option, which is used in the declaration of some BASED variables, assigns a 
value to a member of a structure in which it appears, as also described in the 
section on "Storage Management”. Finally a GET statement assigns an input value 
that is a character string to an input variable, as described in the section on 
"Stream Input/Output”.

ARGUMENTS AND RESULTS

There are implied conversions in connection with the invocation of a 
procedure. For example, consider the following procedure:

F3: PROC(A) RETURNS(FIXED BINARY(20));
DCL (A,B) FLOAT;
B = A**3;
RETURN(B);
END;

Suppose this procedure is invoked by the function reference

F3(4.58)

The argument of this function reference is a literal constant, 4.58, whose 
storage type is FIXED DEC IMAL(3,2), and so it must be converted before being 
assigned to the parameter A whose storage type is FLOAT. Similarly, the 
returned value B is FLOAT, and so it must be converted before being assigned to 
the temporary storage for the value of the function reference whose storage type 
is FIXED BINARY(20). Thus conversion occurs for both argument and result in 
this case. A description is given in the section on "Procedure Invocation”.
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BUILT-IN FUNCTIONS AND EXPRESSIONS

Just as conversion may be required for the invocation of a 
programmer-defined procedure, so also may conversion be required for a built-in 
function reference. However, the built-in functions do not restrict an argument 
to a single storage type but rather accept any one of a specified set of storage 
types. Thus the built-in functions are designed to minimize the need for 
conversion of values. Details are given in the sections on ’’Expressions” and 
”Operat i ons”.

There are built-in functions whose purpose is the explicit conversion of a 
value from one storage type to another. Consider the following program 
fragment:

DCL S CHAR(10);
DCL I FIXED;
• • •
S = CHAR(1,10);

Here the built-in function CHAR is used to convert the arithmetic value of I to 
a character string for assignment to S. The built-in conversion functions are 
not used very often, for two reasons. First, the necessary conversions are 
usually provided by default in PL/I. Second, the conversion functions are 
poorly designed and difficult to use. Full details are given under ’’Conversion 
Operations” in the section on ’’Operations”.

Expressions are similar to built-in functions in their use of conversion. 
Although the operator in an expression may require conversion of its operands, 
the requirement is reduced in certain ways. For example, if both of the 
variables of the expression A+B are REAL FIXED DECIMAL, then both values are 
used without conversion, even though they may not have the same PRECISION 
attribute. Details are given in the sections on ’’Expressions" and "Operations".

S pec i a 1 Contexts

There are many contexts in which the value of an expression is required for 
a special purpose, and in these contexts the value is converted to a specific 
storage type. For example, consider the assignment statement:

X(2*l+K) = 0;

In this statement the expression ’2*1+K’ appears in a context that requires a 
subscript; accordingly, its value is converted to an integer. As a second 
example, consider the output statement:

PUT LIST(ALPHA);

In this statement, the expression ALPHA appears in a context 
value that can be placed in the output stream; accordingly, it 
character-s tr i ng.

that requ ires a
is converted to a
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The distinctive characteristic of a special context is that the storage 
type of the target is implicit; that is, it is implied by the use to which the 
given value is put rather than being given by means of a declaration. In order 
to provide an overall view, the special contexts are listed here; they are 
classified according to the storage types of the implied targets: integer, 
character-string, bit-string, and locator.

INTEGER TARGETS

When a special context requires that the value of a given expression be 
converted to an integer, the target storage type is:

REAL FIXED BINARY(p,0)

The number-of-d i gi ts, jd, is always sufficiently large to accommodate any value 
that is valid in the given context. The integer contexts are as follows:

The maximum-1ength expression in a CHARACTER or BIT attribute, as 
described in the section on "Value Storage"

The area-size expression in an AREA attribute, as 
section on "Value Storage"

des cr i bed in the

Each of the array-bound 
described in the section

expressions in a DIMENSION 
on "Value Storage"

a 11 r i bu te, as

The expression in a POSITION attribute, as described 
"Storage Management"

in the section on

Each replication-factor expression in an INITIAL 
described in the section on "Storage Management"

attr i bute, as

Each subscript expression in a subscripted 
described in the section on "Expressions"

var i ab1e reference, as

The expression in a PAGESIZE or LINESIZE option in an OPEN statement 
for a STREAM file, as described in the section on "Stream 
Input/Output"

The expression in a SKIP or LINE option in a GET or PUT statement, as 
described in the section on "Stream Input/Output"

Each expression in a format specification list, as described in the 
section on "Stream Input/Output"

The expression in an IGNORE option in a READ statement, as described 
in the section on "Record Input/Output"

The arguments of some built-in functions (for example, the second and 
third arguments of SUBSTR), as described in the section on 
"0perat i ons"

CHARACTER-STRING TARGETS

When a special context requires that the value of a given expression be 
converted to a character-string, the target storage type is:

CHARACTER(ml)
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The maximum-1ength, ml./ is determined 
expression. The character-string contexts

from the storage 
are as fol lows:

type of the gi ven

The expression in a TITLE option, as described in sections on "Stream 
Input/Output” and "Record Input/Output"

Each expression that supplies an output value in a PUT statement, as 
described in the section on "Stream Input/Output"

The expression in a STRING option in a GET statement, as described in 
the section on "Stream Input/Output"

The expression in a KEY or KEYFROM option, as described in the section 
on "Record Input/Output"

BIT-STRING TARGETS

When a special context requires that the value of a given expression be 
converted to a bit-string, the target storage type is:

BIT(ml)

The maximum length, mlt is determined from the storage type of the given 
expression. There are two bit-string contexts, as follows:

the section on

descr i bedas

The test 
" Progr am

The test 
in the section on

expression in an IF statement, as described in

expression in a WHILE option in a DO statement 
"Program Flow"

LOCATOR TARGETS

In one special context, the value of an expression must be converted to a 
locator target. In this case, the target storage type is;

POINTER

and the given expression must already be POINTER or OFFSET. The locator context 
i s :

The locator qualifier expression in a locator qualified reference, as 
described in the section on "Expressions"
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DATA TYPE CONVERSION

Rules for all possible conversions of the data type of a scalar are given 
in the following paragraphs. Arithmetic, character-string, bit-string, and 
locator targets are considered.

Pictured strings are not discussed, either as targets or as the source of 
the value to be considered. This omission reflects the fact that when a 
pictured-string storage unit is accessed, it is always considered to have an 
arithmetic or ordinary cha racte r-s t r i ng value. An earlier section, ’’Value 
Storage”, gives the relation between a pictured storage unit and its arithmetic 
or character-string value.

When a conversion is attempted that could be an error, an appropriate PL/I 
cond i t i on occurs. The occurrence of such conditions are mentioned in the 
following rules, but a discussion of their significance is deferred until later 
in this section, under the heading ’’Conditions for Conversions”.

Arithmetic Targets

The rules for converting a scalar computational value to a given arithmetic 
data type follow. This is the most important kind of conversion because it 
includes the conversion from one type of arithmetic value to another. The 
conversion is performed in four steps, as follows:

then no reinterpretation is

1. Re i nte rpretat i on. An ari thmet i c value i s obta i ned f rom the g i ven
value as fol 1ows:

If the given value is a r i thmet i c, 
requ i red.

If the given value is a character-string, then it is 
reinterpreted as an arithmetic value. The string must have one 
of the following forms:

s i gn ari thmetic-constant
s i gn arithmetic-constant s i gn 
nu11 -st r i ng

ari thmetic-constant

The first form represents a real value, the second a complex 
value, and the third a zero real value. The initial sign can be 
omitted if it is plus. The arithmetic constant is defined in the 
section on ’’Expressions”. Blanks can occur in the 
character-string only before or after the entire value 
representation, not within it. If the character-string does not 
satisfy all of these conditions, it cannot be interpreted as an 
arithmetic value and the CONVERSION condition occurs.

c. If the given value is 
an ari thmet i c value 
binary representation 
bit taking the unit's

a bi t-st r i ng, 
by treating 

of a pos i t i ve 
pos i t i on.

then it is reinterpreted as 
the sequence of bits as the 

integer, with the rightmost
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Representat i on. The value is represented according to the scale and 
base attributes of the target data type, but with the mode and 
precision required by the value itself. The specific rules are as 
fo11ows:

a. The mode is COMPLEX or REAL depending on whether the value does
or does not have an imaginary part. If the value has only an
imaginary part, zero is assumed for the real part.

b. The scale and base are those of the target data type.

c. The precision (number of digits and scale factor) is whatever is
necessary to represent the given value. Some values cannot be 
represented exactly, and for such values low-order digits that do 
not affect the final result (obtained after the "Approximation” 
step) are omi tted.

3. Approx i ma t i on. If necessary, the value is approximated. The
operation depends on the mode, scale, and precision of the target data 
type, as foilows:

a. A FIXED value representat ion is adjusted to have the number of 
fractional digits that is specified by the target precision. 
This may require the addition of zeros at the right or the 
truncation of low-order digits. No rounding occurs.

b. A FLOAT value representation is adjusted to have the number of 
mantissa digits that is specified by the target precision. This 
may require the addition of zeros or the truncation of low-order 
digits. Rounding occurs in the case of FLOAT values only.

c. A COMPLEX value representation is adjusted to the target mode. 
If the target mode is REAL, then this requires the truncation of 
the imaginary part of the value representation.

4. Range Check. The magnitude of the value is checked to determine 
whether or not it can be accommodated by the target data type. The 
following cases apply:

a. A FIXED value representation is adjusted to have the high-order 
digits that are specified by the target precision. This may 
require the addition of zeros on the left or the truncation of 
high-order digits. If truncation of nonzero high-order digits 
occurs, then the SIZE or FIXEDOVERF LOW condition occurs.

b. A FLOAT value representation has its exponent checked. If the 
exponent is greater than 127, the OVERFLOW condition occurs. If 
the exponent is less than -128, the UNDERFLOW condition occurs.

This concludes the rules for conversion to an arithmetic target. A good 
way to learn such a set of rules is to extract from them those features that are 
not obvious. What is ’’not obvious" depends on the reader, but for the rules 
just given, the following items might be selected:

Blanks can appear before or after but not 
represen tat ion of an arithmetic value.

within a character-string
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A character string that is all blanks is 
va1ue ze ro.

interpreted as the arithmetic

When an arithmetic value is approximated, rounding occurs only if the 
target is FLOAT.

When a COMPLEX value is converted to REAL, the imaginary part is 
discarded without the occurrence of a condition to report a possible 
error.

EXAMPLES OF ARITHMETIC TO ARITHMETIC CONVERSION

As a first example, suppose the given value is the character string 
” 25 . 9 7181)6)6)6” and the target data type is REAL FLOAT DECIMAL(5). The first step 
in the conversion is the re i nte rp re tat i on of the string value to yield an 
arithmetic value, giving 25.97181 . The second step is the representat i on of the 
value according to the target scale and base attributes, which are FLOAT and 
DECIMAL, giving +259 7181E-5. The third step is the approx i mat i on of the value 
as specified by the target precision, which is 5, giving +25972E-3. The fourth 
step is the range check which, in this case, determines that the exponent is in 
the required range of -128 through +127. The final result of the conversion, 
+25972E-3 is a valid value rep resentation for the given data type.

The fol lowing
a r i thmet i c ta rget:

examples show the conversion of an arithmetic value for an 

G i ven Va1ue Target Type Exact Representation Result Vaiue

17.876 F 1 XED DEC(5) +17.876 +00017.
17.876 F 1 XED DEC(5,1) +17.876 +0017.8
17.876 F 1 XED DEC(5,3) +17.876 +17.876
17.876 FIXED DEC(5,U) +17.876 (SIZE)

131 F 1 XED BIN(12) + 10000011.B + 000010000011 .B
131 FIXED BlN(12,2) +10000011.B +0010000011.00B
131 F 1 XED B 1 N(12,5 ) +10000011.B (SIZE)

-6.9 F 1 XED BlN(9,6) -110.1110011..,B -110.111001B
-6.9 F 1 XED BlN(9 ) -110.1...B -000000110.B

5.638 FLOAT DEC(5) +5638.E-3 + 05638 . E-3
5.638 FLOAT DEC(3) +5638.E-3 +56U.E-2

The first group of examples (for the given value 17.876) show the effect of 
gradually increasing the scale factor of the target until, finally, there are 
not enough integer digits and the SIZE condition occurs. The second group is a 
similar sequence for a binary target. The third group shows the handling of a 
value, -6.9, that cannot be expressed exactly in binary representation; the 

in the exact representation means ’’digits that do not affect the final 
result”. The last group shows a DECIMAL FLOAT target; and includes the only 
example in which rounding occurs when low-order digits are truncated.
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EXAMPLES OF STRING TO ARITHMETIC CONVERSION

The following examples illustrate the
bit-string va1ues to arithmetic targets.

conversion of character-str i ng or

Given Value Target Type Reinterpretation Resu1t Value

"-8.92|6|6|6" FIXED DEC(5) -8.92 -00008.
"-168.9 2161616" FIXED DEC(5) (CONVERSION)
"|61616" FIXED DEC(5,2) 0 +000.00
tilt FIXED DEC(5,2) 0 +000.00

231 COMPLEX DEC FLOATC5) 0 + 231 +00000. E0+00023.E0I
231 DEC FLOATC5) 0 + 231 +00000. E0

"8.23E-2 FIXED DEC(5,2) . 0823 +000.08
"8.23-2" FIXED DEC(5Z2) (CONVERSION)
"8.23E-127" FLOAT DECO) 823E-129 (UNDERFLOW)

"101"B FIXED DEC(U, 1) 5 +005.0
""B FIXED DEC(4Z1) 0 +000.0
"0000000"B FIXED DEC(4,1) 0 +000.0

The first group of examples shows ways in which blanks can and cannot be used in 
a character string that is to be converted into an arithmetic value. The second 
group shows how a complex value is filled out or truncated as the target 
requires. The third group shows how the wrong format for a floating-point value 
causes the CONVERSION condition to occur and also shows how the conversion of a 
number that appears to be in range can cause the UNDERFLOW condition to occur. 
The final group shows the conversion of bit-string values to arithmetic values.

Character-String Targets

The conversion of a
is performed according to

scalar computational 
one of the following

va 1 ue 
three

to a character-string value 
rules:

1. Given Character-String. Suppose the given value is a 
character-s t r i ng. Let the string type of the target be CHARACTERC ri), 
where n. is the maximum length. Then the conversion is as follows:

a. If the length of the given value is 
target is VARYING, then the given 
i s the resu11.

not greater than ri and the 
value (with its given length)

b. If the length of the given value is not greater than ri, as 
before, but the target is NONVARYING, then blanks are added at 
the right end of the given string until it is ri characters long. 
The extended value is the result.

c. If the length of the given value is greater than n, then the
STRINGSIIE condition occurs.

2. Gi ven Bi t-Stri ng. Suppose the given value is a bit-string. It is
reinterpreted as a character-string value by interpreting each bit as 
a 0 or 1 character. The resulting character-string value is then 
adjusted to the correct length by Rule 1, above.
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3. Given Arjthmetic Value. Suppose the given value 
value. Then the following steps are performed:

is an ar i thmet i c

a. This step depends on scaling and base of the gi ven value (not the 
target). A new number-of-digits, pc> scale-factor, qc> must be 
defined. If the given value is DECIMAL (p,q), then no conversion 
is required and:

pc = p 
qc = q

If the given value is FIXED BINARY (p,q), 
converted to FIXED DEC I MAK pc, qc) where

then the given value is

pc = MlN(CEIL(p/3.32)+1,59)
qc = CEIL(q/3.32) (for q not negative)
qc = -CEIL(-q/3.32) (for q negative)

If the given value is FLOAT BINARY(p), then the given value is 
converted to FLOAT DECIMAL(pc) where

pc = MlN(CEIL(p/3.32),59)

Both of these conversions are performed according to the rules 
for an arithmetic target given earlier in this section. At the 
conclusion of this step, the given value necessarily has base 
DECIMAL. The mode of the value is not changed by this step.

b. Next, the value is expressed as a character-string. Observe that
the representation is different from that used for the value when
it is i n a storage unit.

(1) If the value is REAL FLOAT, it is expressed as follows: a 
blank (for plus) or a -, followed by the first digit of the 
mantissa, followed by the decimal point, followed by the 
remaining digits of the mantissa, followed by E followed by 
a signed, three-digit exponent. Let pc be the 
number-of-digits specified by the precision of the given 
value. Then the mantissa has pc digits and the whole 
character string has length pc+ 7.

(2) If the value is REAL FIXED, the rules for its representation 
as a character-string are complicated and are best given by 
examples (see below). Let pc be the number-of-digits 
specified by the precision of the given value. Unless the 
(rare) F suffix is used, the entire character-string has 
length pc+3.

(3) If the value is COMPLEX, its represen tation is obtained by 
writing the two parts as REAL values according to rule (1)
or (2), just given, and then concatenating them. If the
imaginary part is positive, the blank that indicates its 
sign is changed to +. An I is added just after the 
imaginary part. Blanks that occur between the two parts are
removed and are placed at the right end of the
representation. Let 1r and 1 i be the lengths of the strings 
representing the real and imaginary parts. Then the entire 
character-string has the length 1 r +1 i +1.

The character-string that 
correct length by Rule 1,

results from Step b is adjusted to
above.

the
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This concludes the rules for conversion to a character-string target. 
These rules are used chiefly in connection with data-directed and list-directed 
output, where they determine the format of the values in the listing. The rules 
are complicated, especially when the given value is binary. The following table 
will be useful in determining the precision of a binary value converted to a 
decimal value under Step 3.a:

(71) .

N CEIL(N/3,32) N CEIL(N/3.32)

1-3 1 37-39 12
4-6 2 40-43 13
7-9 3 44-46 14
10-13 4 47-49 15
14-16 5 50-53 16
17-19 6 54-56 17
20-23 7 57-59 18
24-26 8 60-63 19
27-29 9 64-66 20
30-33 10 67-69 21
34-36 11 70-73 22

This table includes the maximum number -of-d i g i ts for a GCOS PL/I binary value

EXAMPLES OF CHARACTER-STRING TO CHARACTER-STRING CONVERSION

The following examples
character-string targets.

illustrate conversion of character-string values to

G i ven Value Target Type Resu1t Vaiue

"ABC" CHAR(6) VAR "ABC"
"ABC" CHAR(6) "ABCIW
"I6ABC" CHARC6) "|z5ABCt4t3"
"ABCI6I6" CHARC6) "ABCm"
lit! CHARC6) " IzS 0 jzS 013 a "
"ABCDEFG" CHAR(6) (STRINGSIZE)

When the VARYING attribute is present, the length of the given value is not 
changed. When the VARYING attribute is not present, NONVARYING is assumed and 
the given value is extended to the maximum length. The examples show that 
blanks that are already in the given string are treated as ordinary characters. 
When the length of the given string exceeds the maximum length allowed by the 
target, the STRINGSIZE condition occurs.

EXAMPLES OF BIT-STRING TO CHARACTER-STRING CONVERSION

The following examples
character-string targets.

illustrate conversion of bit-string values to

Gi ven Value

”0100MB
"OIOOJ'B

Target Type

CHAR(7) VAR
CHARC7)

Resu1t Va1ue

"0100"
1101 OOtzSkSIzS’'
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Observe that extension of the string occurs 
string, so the added characters are blanks,

after its.conversion to a character- 
not zeros.

EXAMPLES OF ARITHMETIC TO CHARACTER-STRING CONVERSION

Many examples are required to adequately illustrate the conversion of 
arithmetic values to character-string targets. Groups of examples will be given 
for each of the following types of given arithmetic values:

FLOAT DECIMAL
FIXED DECIMAL
FLOAT BINARY
FIXED BINARY
COMPLEX

The conversions can be understood in two ways. In many cases, it is enough to 
determine how many characters the character-string form of an arithmetic value 
requires. In some cases it is necessary to know the exact representation that 
is used. The examples illustrate both levels of knowledge.

FLOAT DECIMAL Values

The following examples 
character-string targets.

illustrate conversion of FLOAT DECIMAL values to

Given Type

FLOAT DEC(5)
FLOAT DEC(5)
FLOAT DEC(5)

G i ven Value

-81993.E6
+81993.E6
+81993.E6

Target Type.

CHAR(14)
CHAR(14)
CHAR(IO)

ResuIt Value

"-8.1993E+010$$”
"b8. 1993E+0KW"
(STRINGSIZE)

In the first two examples,

P = 5 
p+7 = 12 
length = 14

(number-of-digits in given value) 
(length of the representation) 
(length required of the target)

Observe that three digits are always provided for the exponent; this is part of 
a design policy that assures that the represen tat i on always takes £+7 columns, 
regardless of the particular given value.

FIXED DECIMAL Values

The following examples 
character-string targets.

i1 lustrate conversion of FIXED DECIMAL values to

G i ven G i ven Value Target Type ResuIt Value

FIXED DEC(4,2) -49.62 CHARC20) VAR "16-49.62"
FIXED DEC(U,2) -00.02 CHARC20) VAR "1616-0.02"
FIXED DEC(4,2) +00.02 CHARC20) VAR "|616160 . 02"

FIXED DEC(4,0) -8200. CHARC20) VAR "1616-8200"
FIXED DECCA,0) +0000. CHARC20) VAR "|616|6|6|6160"
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Because the target is VARYING, the result string is not extended to 20 
characters. Observe that the length of the result is always £+3 (where £ is the 
number-of-digits of the given value); that is, although leading zeros, the plus 
sign, and a trailing decimal point are all suppressed, blanks are added at the 
left to compensate for the suppressed characters. Thus it is easy to calculate 
the length of the result.

When a value is FIXED DECIMAL(p,q) and the scale factor is negative (q<0) 
or the scale factor is greater than the number-of-digits (q>p), then the decimal 
point is not adjacent to a variable digit of the value; instead it is adjacent 
to a sequence of filler zeros, as the examples below show. Such fixed-point 
values are given special treatment, as follows:

Given Type

FIXED DECO,-2)
FIXED DEC(7,11)
FIXED DECO,11)

Given Value

+066700.
-.00008131885
-.00000009487

Target Type

CHAR(20) VAR
CHAR(20) VAR
CHARC20) VAR

ResuIt Value

"00667F+2"
"-8131885F-11"
"000-9487F-11"

The slashed zeros are the filler zeros. In the representation of these values 
no attempt is made to place the decimal in the representation of the value; 
instead, each value is expressed as an integer with a scaling factor. The 
scaling factor in the representation is the negat i ye of the scaling factor in 
the precision attribute.

FLOAT BINARY Values

The following examples illustrate conversion of FLOAT BINARY values to 
character-string targets. The target type CHARC20) VAR is assumed in each case.

Given Type Given Value

FLOAT BIN(27) +.1011001 ... E7B
FLOAT BINC20) -.1000000 ... E-9B

Intermediate Value

+000000089.E0
-9765625.E-10

Resu1t Value

"08.90000000E+001"
"-9.765625E-004"

The '...' indicates zero digits that fill out the required precision of the 
binary value. The "intermediate value" is the value after it has been converted 
to a DECIMAL value but before it has been converted to a character-string. The 
data type for the intermediate value is calculated from the formulae of Rule 
3.a, above. The calculation is as follows:

First Example

p = 27
p/3.32 = 8.1 ...
CEIL(p/3.32) = 9

The intermediate data types for the 
DEC(7).

Second Example

p = 20
p/3.32 = 6.02 ...
CEIL(p/3.32) = 7

two examples are FLOAT DECO) and FLOAT
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FIXED BINARY Values

The following examples illustrate the conversion of FIXED BINARY values to 
character-string targets. The target is assumed to be CHARC20) VAR.

GJLv£D, Type Given Value I ntermediate Value Result Value

FIXED BIN(9, 0) -001010101.B -0085. * ’ |z$ £ feS - 8 5"
FIXED BIN(9,0) -111111111.B -0511. "1^-511"

The "intermediate value" is again the value after it has been converted to a 
DECIMAL value and before it has been converted to a character-string. The data 
type for the intermediate value is calculated as follows:

Number-of-digi ts Scale-factor

P = 9 q = 0
p/3.32 = 2.7 ... q/3.32 = 0
CEIL(p/3.32) = 3 CEIL(q/3.32) = 0
CEIL(p/3.32)+l = 4

Thus the intermediate type is FIXED DEC(4,0). The second example shows that the 
formulae allowed one more digit (4 instead of 3) than were required by the 
largest possible value of the given data type. The example in the next 
paragraph shows the reason for this aspect of the design of PL/I.

The following is 
to a character-string

one more example of the conversion of a FIXED BINARY value 
target.

Given Type Given Value 1ntermed i ate Va1ue Result Value

FIXED BlN(9Z1) -11111111.IB -255.5 "0-255.5"

Here the data type of the intermediate value is calculated to be FIXED DEC(4,1). 
The full four digits of precision are required to represent the value -255.5. 
It thus becomes apparent that although a nine-bit i nteger never needs four 
decimal digits, a nine-bit number may need four decimal digits. In any case, 
the formulae given in Rule 3.a always apply.

COMPLEX Values

The following example 
character-string targets.

i11 us trates the conversion of COMPLEX values to

Given Type: COMPLEX FLOAT BlN(20)
Given Value: -0.1000000000000000000E-1B+.11100000000000000000E1BI
Intermed i ate Type: COMPLEX FLOAT DEC(7)
Intermedi ate Value: -2500000E-7 + 1750000E-6I
Target Type: CHARC32)
Result Value: "-2. 500000E-001 + 1. 75 00 00E+00 0 Ibbb"

4-15 DE05



Bi t-S t r i ng Targets

The 
perfo rmed

conversion of a scalar computational value to a 
according to one of the following three rules:

bit-string value is

G i ven Bi t-S tr i ng. The rules for adjusting the length of a bit-string 
to suit the target are the same as for character-string to 
character-string conversion with one exception: whereas a 
character-string is extended with blank characters, a bit-string is 
extended with zero-bits.

Given Character-String. Suppose the given value is a 
character-string. If every character is a 0 or a 1 character, then 
the character-string is reinterpreted as a bit-string by interpreting 
each character as a bit. The resulting bit-string is then converted 
to a bit-string of the required length by Rule 1, above. If the 
character-string contains a character other than 0 or 1, the 
CONVERSION condition occurs.

3. Given Arithmetic Value. Suppose the given value is arithmetic. 
First, the value pc is computed according to the following table:

Attributes of Given Value of pc

FIXED BINARY(p,q) MIN(71,MAX(p-q,0))
FIXED DEC I MAK p, q) Ml N( 71,MAX(CEI L((p-q)*3.32),0))
FLOAT BlNARY(p) MlN(71,p)
FLOAT DEC IMAL(p) MlN(71,CEIL(p*3.32))

If the value of pc is zero, then the null bit-string is i mm e d i a t e1y 
adopted as the result of the conversion. Otherwise, the given value 
is converted to an intermediate value of data type REAL FIXED 
BINARY(pc,0). The result of this conversion is a BINARY integer 
value. This value is reinter pre ted as a bit-string by ignoring the 
sign and treating each binary digit as a bit. The resulting 
bit-string is adjusted to the correct length by Rule 1, above.

EXAMPLES OF BIT-STRING TO BIT-STRING CONVERSION

The following
bit-string targets.

examples illustrate the conversion of bit-string values to

Given Value T a rge t Type Resu1t Value

"11010"B BIT(8) VAR "11010"B
"11010"B BIT(8) "11010000"B
""B BIT(U) VAR ,,HB
””B BIT(4) "0000"B
”11010”B BIT(U) (STRINGSIZE)

The examples show the difference between conversion to a VARYING or a NONVARYING 
target. The last example shows that the STRINGSIZE condition occurs when the 
given string is too long for the target.
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EXAMPLES OF CHARACTER-STRING TO BIT-STRING CONVERSION

The following examples illustrate the conversion of character-string values 
to bit-string targets.

G i ven Value Target Type Resu1t Value

”11010” BIT(8) VAR ”11010"B
”11010" BIT(8) ”11010000”B
"” BIT(U) VAR ”"B
”” BIT(U) ”0000”B
”11010” BITCU) (STRINGSIZE)

”0120” BIT(4) (CONVERSION)
”101$” BIT(U) (CONVERSION)

The first five examples parallel the examples given for bit-string to bit-string 
conversion in the previous paragraph. The last two examples show that if a 
character that is not 0 or 1 appears in the given string, then the CONVERSION 
condi t i on occurs.

EXAMPLES OF ARITHMETIC TO BIT-STRING CONVERSION

FIXED BINARY Values

The following examples illustrate conversion of FIXED BINARY values to
bi t-fstring targets. In each example, the target is assumed to be BIT(20) VAR.

The

Given Type

FlXED BlN(5,0) 
FIXED BlN(5,3) 
FIXED BlN(5,-3) 
FIXED B1N(5,6 )

"Intermedi ate

G i ven Value pc 1ntermed i ate Value ResuIt Value

-01011.B 5 -01011.B "01011"B
+10.111B 2 +10.B "10"B
+10111000.B 8 +10111000.B "10111000"B
+.01O111B 0 (NOT REQUIRED) ""B

value" is the value after it has been converted to a FIXED
BI NARY (jdc, 0 ). data type. In the last example, pc is zero, so the null bit-string 
is assumed without resort to an intermediate value. In all the examples, the 
result bit-string is a representation of the integer digits of the given value.

FIXED DECIMAL Values

The following examples illustrate conversion of 
bit-string targets. In each example, the target is

FIXED DECIMAL values to 
assumed to be BIT(20) VAR.

G i ven Type G i ven Value p c Intermediate Value ResuIt Value

Fl XED DEC(5,2) -034.95 10 -0000100010.B "0000100010"B
FIXED DEC(5,6) +.081327 0 (NOT REQUIRED) mi B
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The value of pc for the first example is calculated from a formula 
above, as foilows:

in Rule 3,

p = 5, q = 2
p-q = 3
(p-q)*3.32 = 3*3.32 = 9.96
CEIL((p-q)*3.32) = CEILC9.96) = 10
MAX(CEIL(p-q)* 3.32,0) = MAX(10,0) = 10
MIN(71,MAX(CEIL(p-q)*3.32,0)) = MIN(71,10) = 10

Thus the data type of the intermediate value for the first example is FIXED 
BlN(10z0). In the second example, pc comes out to be zero so that the null 
bit-string is the result without resort to an intermediate value.

FLOAT Values

following examples illustrate conversion of FLOAT values 
In each example, the target is assumed to be BIT(20) VAR

to bit-string

Given Type G i ven Va1ue pc Intermediate Value Result Value

FLOAT BIN(IO) -.1101100100E+6B 10 -0000110110.B
FLOAT DEC(2) +59E-1 7 +0000101.B

"0000110110"B
"ooooior'B

COMPLEX Values

An example of a COMPLEX given value is not included here because the effect 
of the conversion of the value to an intermediate FIXED BIN(pc 0 ) is to discard 
its imaginary part and treat it as a REAL value.

Locator Targets

There are two kinds of locator values: POINTER and OFFSET. Conversion 
between the two kinds of locator values occurs without any restrictions or 
special rules. For example, in the statement

CUR->CELL = ALPHA;

the variable CUR appears as a locator qualifier and must have a locator value. 
If CUR is a POINTER variable, its value is used as is; but if it is an OFFSET 
variable, its value is automatically converted to a POINTER value.

AGGREGATE TYPE CONVERSION

All possible conversions of aggregate types are described in this section. 
The target aggregate type is always known when a conversion is performed. 
Conversion is allowed only in certain simple cases in which the aggregate type 
of the given value is the aggregate type of a component of the target. In some 
descriptions of PL/I, the conversion of an aggregate type is referred to by a 
special word ’’promotion".
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The rules for 
are only two cases

converting a value to a given aggregate type follow. There 
for which aggregate type conversion can occur, as follows:

1- S^a l,ars. A scalar can be converted into any aggregate by taking the 
value of the scalar to be the value of each scalar component of the 
aggregate.

2. Structures. A structure can be converted into an array whose elements 
are structures of the same aggregate type as the given structure. The 
value of the given structure is taken to be the value of each element 
of the array.

When a given value differs from an aggregate target and cannot be converted by 
the rules just given, the program is invalid.

When the aggregate type of the given value agrees with that of the target 
(either from the beginning or after conversion), then each component of the 
given aggregate must be converted to the data type of the corresponding 
component of the target. The conversion of the components proceeds according to 
the rules already given for type conversion. Each such conversion is a distinct 
operation, and the conversions do not occur in any defined order.

An Example of Aggregate Conversion

The following example
aggregate type to a target

illustrates the complete conversion of a 
of a different aggregate type.

value of one

Given Type: 01, 02 FIXED DEC(4), 02 CHAR(10) VAR
Given Value: +0132., "HENRY”
Target Type: 01 DI MENS I0N(1;2), 02 FIXED BIN(10), 02 CHARC8)

Result Value: +00 10000100 . B, ” H ENRYtW" , +0 01000 010 0 . B, "HENRYfeW"

There are three distinct actions associated with this conversion:

• The aggregate type is promoted from 01,02,02 (a structure with two 
scalar components) to 01 DIM(1:2),02,02 (an array of two structures 
that each have two scalar components).

• A FIXED DEC(4) value is converted to a FIXED BIN(10) target.

• A CHAR(10) VAR value is converted to a CHAR(8) target.

There is no assurance that these steps will occur in this or any other 
particular order; thus if a condition occurs during the conversions, it is not 
possible to know exactly how far the conversion has progressed.
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CONDITIONS FOR CONVERSIONS

The conditions that can occur during the conversion of values are described 
here. They are:

SIZE
FIXEDOVERFLOW
OVERFLOW
UNDERFLOW
CONVERSION
STRINGSIZE

A general discussion of conditions appears later, in the section on "Condition 
Handling"; only the relevance of the conditions to the conversion of values is 
di scussed here.

A program can establish an ON unit that is executed when a particular 
condition occurs. If an appropriate ON unit is not estab 1ished.when a.given 
condition occurs, PL/I supplies a default ON unit. For some conditions, it is 
not valid for an ON unit to return control to the point at which the condition 
occurred; and such conditions usually abort execution of the program. For other 
conditions, a plausible recovery action is taken when execution resumes at the 
point at which the condition occurred.

The SIZE and FIXEDOVERFLOW Conditions

Two conditions can occur during the conversion of a value to a fixed-point
arithmetic value; they are as follows:

The SIZE condition occurs when a 
value and the target precision 
left of the point to accommodate

value is converted to a fixed-point 
does not specify enough digits to the 
the magnitude of the given value.

The FIXEDOVERFLOW condition sometimes occurs when the SIZE condition 
would otherwise occur.

These conditions have the same purpose, but they are implemented in different 
ways. If the SIZE condition is enabled, PL/I detects every case in which the 
magnitude of a converted value exceeds the capacity of the target precision. 
For example, an attempt to assign the value 12 to a FIXED BINARY(3,0) target is 
detected, even though the implementation may have allowed more than three bits 
for the value in hardware storage. The checking has a significant cost because 
it often must be performed by compiled instructions rather than hardware 
circuitry. In contrast, the FIXEDOVERFLOW condition occurs only when the 
hardware detects a value which cannot fit in a hardware register.

It is invalid for an ON unit to return control to the point at which either 
of these conditions occurred, and so there is no simple recovery method. PL/I 
provides a default ON unit that writes a message on the ERR0R_0UTPUT standard 
output file and then signals the ERROR condition. The effect of this default is 
to abort the execution of the program, and this is usually the appropriate 
response to a value that is too large.
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The OVERFLOW and UNDERFLOW Conditions

Two conditions are associated with the conversion of a value to a 
floating-point arithmetic value; they are as follows:

The OVERFLOW condition occurs when the conversion 
floating-point value whose exponent is greater than 127.

The UNDERFLOW condition 
floating-point value whose

occurs when the conversion 
exponent is less than -128.

Both of these conditions usually indicate a programming error; 
PL/I processor treats the two conditions in different ways.

produces a

produces a

however, the

The OVERFLOW condition is handled as a fatal error, similarly to the SIZE 
and FIXEDOVERFLOW conditions. An ON unit cannot return control to the point of 
occurrence, and the default ON unit writes a message and signals ERROR, thus 
aborting program execution. On the other hand, PL/I does not treat the 
UNDERFLOW condition as a fatal error. Execution can resume at the point of 
occurrence, and in that case PL/I sets the value in question to zero. The 
default ON unit writes a message, but it then returns control to the point of 
occurrence with a zero value.

The CONVERSION Condi tion

When a conversion calls upon a character-string to supply an arithmetic or 
bit-string value, the character-string must have contents that allow such an 
interpretation. When this requirement is not met, the CONVERSION condition 
occurs. Some examples of character-strings that cannot be converted to 
arithmetic targets follow, together with their corrected forms:

I neo rr ect

"Fl FTEEN” 
"+$29" 
”20*3.14”
”-8.128422+02”

Corrected

”15”
” + 29”
”62.8”
”-8.128422E+02”

The examples reflect the rules given earlier, 
for an arithmetic target.

in the definition of conversion

An ON unit that is established for the CONVERSION condition can examine and 
modify the character-string that caused the CONVERSION condition; and, after 
taking suitable remedial action, the ON unit can return to the point of 
occurrence. The facilities for this action are described in the section on 
’’Condition Handling”. It is rarely possible to make a useful correction to a 
"bad” character-string, and the PL/I default ON unit, which writes a message on 
the standard output file and signals the ERROR condition, is usually the 
appropriate action.
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The STRINGSIZE Condition

When a character-string or bit-string value is converted for a target whose 
length cannot accommodate the value, the STRINGSIZE condition occurs. PL/I 
permits recovery from this condition. If the ON unit invoked by the condition 
returns to the point of occurrence, exactly enough characters or bits are 
truncated from the right end of the string value to reduce its length to that of 
the target. The default ON unit does not place a message on the standard output 
file; it returns directly to the point of occurrence with a truncated string 
value.

Guidelines for Conversion Conditions

The simplest policy with respect to the conditions that occur during value 
conversion is to treat them all as fatal errors. PL/I partially supports this 
policy by providing default ON units for most of the conditions that abort 
program execution. The two conditions that are not handled in this way are 
UNDERFLOW and STRINGSIZE, and their cases must be discussed separately.

Although PL/I does not abort program execution by default when an underflow 
occurs, the underflow message on the standard output file should be viewed as an 
error report. In most computations, an underflow is just as indicative of an 
error as an overflow; both occur when a computation has not been properly 
planned. When analysis of a computation shows that an underflow could occur, 
the underflow should be forestalled by programmed tests that detect the 
development of excessively small values.

Under certain circumstances, a more advanced approach to these conditions 
may be required. Suppose a system for the interactive performance of 
calculations is to be written as a PL/I program. In such a system, the user 
enters commands and these commands are interpreted by the PL/I program. Suppose 
the user gives a command whose interpretation causes an overflow to occur. The 
proper response is not to abort the execution of the whole interpretive program 
but rather to abort the command that the user entered. For this purpose, the 
PL/I program could establish a special ON unit for the OVERFLOW condition.
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SECTION V

PROGRAM SYNTAX

The syntax of PL/I is relatively easy to learn; it is especially uniform 
and reasonable in comparison to the syntax of conventional English or some 
earlier programming languages. This Reference Manual gives an informal 
definition of the syntax of PL/I, and conveys much of this definition by means 
of examples.

The syntax has two purposes. First, it is used to determine whether or not 
a given sequence of characters is s yntact i ca11y valid. Some syntactically valid 
programs turn out to be invalid on other grounds, but the syntax does narrow the 
field in a reliable and effective way. Second, the syntax gives names to the 
components of a program. That is, the syntax defines precisely which character 
sequences are i ntegers, which are express i ons, and so on; therefore, these words 
take on an exact meaning in the discussion of a PL/I program.

This section does not give a detailed syntax for PL/I; instead, it presents 
the main syntactic features of PL/I. The details of syntax are given elsewhere 
in this manual; for example, the syntax of expressions is given in the section 
on ’’Expressions” and the syntax of the DO statement is given under ’’Program 
Flow”. A detailed syntax for each PL/I statement is also given, in reference 
form, in the appendix, "Guide to PL/I Statements.”

This section presents four views of the syntax of a PL/I program. First, 
it considers a program to be a sequence of cha racters, and describes the set of 
allowed characters without discussing which sequences of characters are allowed. 
Second, it considers a program to be a sequence of 1exemes, and defines the 
identifiers, constants, operators, and so on. Third, it considers a program to 
be a sequence of statements, and describes the general syntax of statements 
without entering into the details of individual statement syntax. Finally, it 
considers the program structures of PL/I that are used to gather sequences of 
statements together into single program components. The section concludes with 
a discussion of the relation between the externa 1 procedu re and a program.
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CHARACTERS

A program can be viewed simply as a sequence of characters,. Any of the 128 
characters of the ASCII character set can appear ina PL/I program. A simple
classification of those characters as they are used by PL/I follows:

letters : A B C ... Z a b c ... z

digits: 0 1 2 ... 9

sped a 1 characters: + * / = > < z & 1

• / • • ; ( ) " ._ 'P 'o

spaces: blank tab newl i ne newpage

s tr i ngs only: (the remaining ASCII characters)

The last item in the classification, ’’strings only”, is included because every 
ASCII character, even if it has no other significance in PL/I, can appear in a 
character-string constant.

The set of characters required for PL/I is relatively small; and all but 
four or five of the characters are found on a standard typewriter. Therefore, 
it is convenient to type and publish PL/I programs on conventional, 
noncomputerized equipment.

LEXEMES

A program can be viewed as a sequence of 1 exem.es. The division of a 
program into lexemes corresponds to the division of ordinary text into words, 
punctuation marks, and spaces. As an example of the division of PL/I text into 
lexemes, consider the following assignment statement:

ALPHA= 5.66;

This statement is a sequence of five lexemes, as follows: the identifier ALPHA, 
the operator ’ = ’, the separator (blank), the literal constant 5.66, and the 
punctuator A long string of terminology can be applied to a single.lexeme;
for example, 5.66 is, in fact, a ’’fixed-point decimal real arithmetic 
1i tera 1 - constant”.

In what follows, each kind of lexeme is described; there are eight kinds of 
lexemes, as follows:

identifier
1i tera 1 constant 
punctuator 
ope ra to r 
picture
i sub
%\ NCLUDE
s epa rator

After the lexemes are described, the s epa ration ru1e for lexemes is given; it is 
the rule that governs b1anks, new 1i nes, and so on, to keep the lexemes of a 
program from running together. The discussion of lexemes concludes with a 
detailed classification of the lexemes.
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Identifiers

An identifier is either a single letter or a letter 
of characters; each character of the sequence must 
break, or a dollar sign. An identifier can be up to 256 
length is, practically speaking, unlimited.

fol lowed by a sequence 
be a letter, a digit, a 
characters long, so its

Often identifiers use only letters and digits, 
identifiers are:

Examples of such

ALPHA ALPHA23 ALPHA23XYZ

A break character is used where, in English, a hyphen would be used. The 
hyphen is not available in PL/I because it cannot be distinguished from a minus 
sign. Examples of identifiers with break characters are:

accou n t__name i ntake_man i fo 1 d__pressur e

Some care is necessary in choosing identifiers for external names. 
External names are sometimes converted by the compiler to meet requirements of 
the Loader, and the result could conflict with reserved system names or another 
external name. A detailed discussion of this question is given in Appendix F of 
the PL/I User’s Guide, entitled ’’External Names”.

KEYWORD VS. NAME

A particular occurrence of an identifier in a PL/I program is either a 
keyword or a name. When an identifier is used as a keyword, it has a specific 
meaning that is part of the definition of PL/I; for example, when the identifier 
GOTO is used as a keyword, it always specifies a transfer of control. In 
contrast, when an identifier is used as a name, its meaning depends on its 
declaration in the program; for example, the identifier X can be declared as a 
FIXED DEC(8) variable, a LABEL constant, or any other kind of name.

In some programming languages, the identifiers that are used as keywords 
are reserved for that purpose only. However, in PL/I there are so many keywords 
that it would be a considerable disadvantage to reserve all of them, and so.PL/I 
does not have this restriction. Instead, the inter pretation of an identifier 
depends on its position in the syntax of a program. Suppose, for example, that 
a statement begins with the identifier GOTO. The statement certainly could be a 
GOTO statement; for example:

GOTO LAB;
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In this case, the identifier GOTO is interpreted as a keyword. However, a 
statement that begins with GOTO could be an assignment statement; for example:

GOTO = 1;

In this case, the identifier is a name (and it must be properly declared). Thus 
the identifier GOTO can be either a keyword or a name, depending on the context 
i n wh i ch it appears.

It might be thought that there are cases in which it is difficult to 
determine whether an identifier is being used as a keyword or a name. This is 
not the case. In practice, an elementary knowledge of PL/I is sufficient to 
determine the interpretation of the identifiers in a program.

As an example of the interpretation of identifiers, consider the following 
program, in which keywords are underlined and names are not:

P: PROC;
DCL (SYSIN,SYSPRINT) FlLE;
DCL DATA FLOAT;
GET DATA(DATA);
DATA = DATA**2;
PUT DATA(DATA);
END;

(The underlining in this example is only for the purposes of discussion; in a 
true PL/I program, an identifier is never underlined.) In this example, P, 
SYSIN, and SYSPRINT are used as names, DATA is used both as a name and a 
keyword, and the other identifiers are used as keywords.

GUIDELINES FOR IDENTIFIERS

A programmer can use as names whatever identifiers are convenient. The 
choice of names does not affect the meaning of a program or its efficiency, but 
it does affect the readability of the program. The larger the program, the more 
important is the choice of name. The following suggestions apply:

• Where possible, use a long and descriptive name for a variable that is 
only referenced a few times. It is not much trouble to write out so

few references, and the reader can understand the meaning of such a
name immediately. On the other hand, use a short, abbreviated name
for a variable that is referenced many times. In such a case, the
resulting compactness is worth the trouble of introducing an 
abbrev i at i on.

When abbreviations are used, choose them according to some uniform 
rules, so that similar variables have similar names.
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Avoid using common keywords as names. When names such as

GOTO DECLARE DCL IF THEN

and so on are used as names, a superficial but irritating confusion is 
introduced. On the other hand, do use uncommon keywords as names 
where that is convenient. There is certainly no harm in using DFT to 
name a variable for the ’’debit final total” (or something of the sort) 
even though DFT is a keyword.

Where possible, avoid using troublesome letters in identifiers. For 
example, the digits zero and one are troublesome because some output 
devices do not clearly distinguish between zero and the letter 0 or 
between one and the letter 1.

Literal Cons tants

There is a literal constant lexeme for each type of arithmetic and string 
value. The full syntax and interpretation of these lexemes are given later, in 
the section on ”Expressions". The following is a represen tative set of examples 
of arithmetic literal constants:

Ar i thmet i c Constant Data Type

304 
3.04 
3.04E-5 
3.04E-5 1

FIXED DEC(3)
FIXED DEC(3,2)
FLOAT DEC(3)
COMPLEX FLOAT DEC(3)

0110001B
Oil.0001B 
011.0001E-2B
Oil.0001E-2BI

FlXED(7)
FlXED(7,4)
FL0AT(7)
COMPLEX FLOATC7)

Observe that an arithmetic constant does 
constant is required, it is written 
arithmetic constant.

not begin with a sign. When a negative 
as two lexemes, a sign followed by an

The following is a representative 
cons tants:

set of examples of string literal

String Constant

"ABCD"
(3) ”ABCD”
ii ii

’’"’’HELLO,”” HE SAID.”

”11101”B
(4) "01"B
’’’iB

Data Type Remark

CHARC4) 
CHAR(12) 
CHARCO) 
CHARC17)

means ’’ABCDABCDABCD” 
means the null character string 
”” counts as ” in value

BlT(8)
BlT(8)
BlT(0 )

means ”01010101”B 
means the null bit string

Any ASCII character can 
nonprinting characters as 
single lexeme, and is not

be used in a CHARACTER string 
tab, newline, and so on. A 
considered to contain smaller

constant, including such 
string constant is a 

1exemes.
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Punctuate rs

There are six punctuator lexemes; each 
in the following table:

is given, together with its purpose,

Punctuator

. (period)

, (comma)

: (colon)

Pu rpos e

indicates the decimal or binary point; also, 
separates names in a qualified reference

separates items in a list of arguments, parameters, 
subscripts, declarations, options, and so on

terminates a condition prefix or a label prefix; 
separates the bounds of an array; and also appears 
in the RANGE option of a DEFAULT statement

(semicolon) terminates a statement

( (left indicates the beginning of a list, an expression, an
parenthes i s) i terat ion factor, and so on

) (right i nd i cates the end of a list, an expression, an
parenthes i s) i terat i on factor, and so on

These lexemes are used in most of the features of PL/I.

Opera to rs

There are five kinds of opera tor 1exemes; they are defined as follows:

Classification Operators 

ar i thmet i c + -*/**

relational = A= < A< > A> <= >=

logical A & 1

string ! !

qua 1i f i er - >

Most of the operators are defined in the section on ”0perators". The only 
exception is the qualifier operator, which is defined in the section on 
”Express ions".
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Pi ctu res

The pi cture 1exeme is a specialized lexeme that 
format of a character string. It begins and 
characters that appear between quotes are restricted, 
i s :

is used to specify the 
ends with a quote, but the

An example of a picture

”$9,999.99”

This picture specifies a character-string 
dollar sign, followed by a digit, followed by 
followed by a period, followed by two digits, 
six-digit, do 11 ars-and-cents figure.

of length nine that consists of a 
a comma, followed by three digits,

In other words, it describes a

A picture lexeme is used in only two contexts. It is used in a PICTURE 
attribute in the declaration of a pictured variable; this usage is described 
earlier, in the section on ’’Value Storage". Second, it is used in a picture 
format i tern in an edit-directed input/output statement; this usage is described 
later, in the section on "Stream Input/Output”. In both cases, the picture 
itself is interpreted in the same way.

I subs

The i sub lexeme is a very specialized lexeme that is used only in the 
DEFINED attribute. It is composed of an unsigned integer followed by the three 
letters SUB; for example, 5SUB. Consider the following declaration of the array 
B:

DECLARE B(2,4) DEFINED A(2SUB,3*ISUB);

The first isub lexeme is 2SUB and means, "the value of the second subscript in a 
reference to B". The second isub lexeme is ISUB and means, "the value of the 
first subscript In a reference to B”. Thus, for example, the statement:

B(I-1,J) = 1;

is i nterpreted as:

A(J,3*( I -D) = 1;

The ^INCLUDE Macro

A ^INCLUDE macro is a sequence of three lexemes, and has the following 
form:

^INCLUDE mn ;

where mn is the macro name. The macro name is an identifier of up to 32 
characters in length. The ^INCLUDE macro is discussed here, under "Lexemes", 
because it begins with a lexeme that has a special form (it begins with a 
percent character) and because its effect is to modify the lexical content of a 
program.
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MACRO INTERPRETATION

A ^INCLUDE macro Is a command directly to the compiler; it is the only 
construct in the language that is not merely translated by the compiler for 
later execution. A ^INCLUDE macro instructs the compiler to take the following 
steps:

Obtain the macro name and locate the macro that is designated by this 
name in the INCLUDE library file.

Compile the given program as if the ^INCLUDE macro were replaced by a 
blank, followed by the contents of that macro located in Step 1, 
followed by a blank.

Th i s def i n i t i on of the ^INCLUDE macro requires further explanation, as fo1 lows:

When the compiler obeys a ^INCLUDE macro, it does not modify any of 
the programmer’s files. It behaves as i f the given program were 
mod i f i ed.

The contents of an included macro can, itself, use a ^INCLUDE macro, 
and that macro is interpreted just as if it appeared in the given 
program.

In Step 2, a blank is inserted before and after the included text to 
keep the first and last lexeme from running into neighboring lexemes.

AN EXAMPLE MACRO

As an example of the expansion of a ^INCLUDE macro, suppose that the 
following procedure exists:

P: PROC;
DCL ALPHA FLOAT;
DCL BETAC20) CHAR(IO);
^INCLUDE XPOOL;

END;

Each time this procedure is compiled, the compiler finds the macro XPOOL in the 
INCLUDE file attached by the file code .L and replaces the ^INCLUDE macro by the 
contents of that macro. Suppose XPOOL exists and contains the following 
dec 1 a rat i ons :

DCL 01 X EXTERNAL STATIC,
02 SIZE FlXED,
02 TAB(IOOO) CHAR(IO);

DCL CNT FIXED;
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For the particular compilation under consideration, the effect is as if the 
procedure P contained the following material:

P: PROC;
DCL ALPHA FLOAT;
DCL BETAC20) CHAR(IO);
DCL 01 X EXTERNAL STATIC, 

02 SIZE FlXED, 
02 TAB(IOOO) CHAR(IO);

DCL CNT FIXED;
• • • 
END;

GUIDELINES FOR MACROS

The ^INCLUDE macro is often used to assist in the organization of a large 
program. Such a program is usually divided into several external procedures, 
which are written and compiled separately and then brought together for 
execution. The external procedures usually have certain text in common, such as 
the declaration of variables and routines that are used throughout the program. 
This common text can be handled as follows:

Create a common 1i b ra ry, which contains the common text. A 
description of the creation, maintenance and structure of an INCLUDE 
file is given in Section XII of the PL/I User’s Guide, entitled 
’’INCLUDE Files" and in Appendix G of the PL/I User’s Guide, entitled 
"Structure of the INCLUDE File".

In each externa 1 
common 1i brar y.

procedure, wr i te a ^INCLUDE macro that references the

The important advantage of this approach is that just one copy 
text exists, and therefore changes are made in just one place.

of the common

This use of common segments can extend through several levels of program 
organization. Suppose that a program is divided into subprograms and each 
subprogram is a set of sub-subprograms. Each sub-subprogram can use a ^INCLUDE 
macro to reference a common segment for the subprogram. That common segment 
can, in turn, use a ^INCLUDE macro to reference a common segment for the entire 
program.

The application for the ^INCLUDE macro that has just been described is an 
important one; however, it is not the only possible use. The segment designated 
by a ^INCLUDE macro need not be a sequence of statements; it can be any 
sequence of lexemes that make sense in the context in which they are used.
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Sepa rators

There are two kinds 
are defined as follows:

of separator lexemes: the space and the comment. They

A space lexeme is one of the following characters:

blank 
tab 
newli ne

Although these characters have different effects, each of them usually 
has the effect of leaving empty space in the listing of a program; 
that is why they are called "spaces".

A comment lexeme has the following form:

where cs is the comment string. The comment string is any sequence of 
ASCII characters that does not contain */. A comment is used to 
insert a message that is directed to the human reader of a program but 
that is ignored by the PL/I processor. It is necessary to learn 
whether the slash or the star comes first in a comment. One mnemonic 
is to suppose that the slash is used as the first (and last) character 
of a comment because the shape of the slash makes a comment easy to 
skip during program execution.

Separator lexemes are used interchangeably. That is, any sequence of one or 
more separator lexemes is equivalent to any other sequence of one or more 
separator lexemes. The role of separator lexemes in PL/I is given by the 
separation rules, which are described in the following paragraphs.

The Separation Rules

»
The subsequent sections of this manual give many informal rules for the 

syntax of PL/I. Each rule ultimately specifies that a given construct is a 
certain sequence of lexemes. However, the definitions make no mention of 
separators. Instead, they assume that the following sepa ra t ion rules are 
followed in all cases:

3.

One or more separators can appea r between any sequence of two lexemes. 
This rule permits the use of spaces to control layout and the addition 
of comments to provide explanations; thus a program can be made 
intelligible to a human reader.

One or more separators must appear between any sequence of two lexemes 
if the first is an identifier, literal constant, or isub and the 
second is also an identifier, literal constant, or isub. This rule 
requires the use of a separator where two lexemes might otherwise run 
together to form a single lexeme.

A separator must not appear within a lexeme. This rule prevents a 
lexeme from being broken up into two lexemes.
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Consider an example of the application of these rules. One version of the 
ALLOCATE statement is defined (in the section on ’’Storage Management”) as having 
the following form:

ALLOCATE id ;

where i d is an identifier. This definition is satisfied by each of the 
following four constructs:

ALLOCATE BETA-5;

ALLOCATE BETA-5 ;

ALLOCATE
BETA_5;

ALLOCATE BETA-5 /*THE STRESS VARIABLE*/;

All of these statements mean exactly the same thing to the PL/I processor, but 
the first separation rule has been applied to produce differences that are 
important to a human reader.

A violation of the separation rules is quite obvious to a human reader, and 
that is why those rules can be given once here and then assumed to apply 
throughout the rest of the manual. Consider the following construct:

ALLOCATEBETA—5;

This construct is not a valid PL/I statement. It arose from the definition of 
the ALLOCATE statement, but the second separation rule was violated, allowing 
ALLOCATE and BETA—5 to run together and form a single identifier.

As a second example of the violation of the separation rules, consider the 
following construct:

ALL OCATE BETA-5;

This construct is not a valid PL/I statement. Once again, it arose from the 
definition of the ALLOCATE statement, but the third separation rule was 
violated, causing the keyword ALLOCATE to be broken up into two identifiers.
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The Classification of Lexemes

The following list gives a complete classification for the lexemes of PL/I . 
It shows, for example, that there are two kinds of decimal real arithmetic 
1itera1-cons tant lexemes; namely, fixed-point and floating-point.

1exeme

i dent i f i er:

1i tera1 cons tant 
ar i thmet i c 

rea 1
dec i ma 1

f i xed-po i nt:
f1oa t i ng-point: 

binary
f i xed-point:
f1oat i ng-point: 

imagi nary
dec i ma 1

f i xed-po i nt:
f1oat i ng-point: 

binary
f i xed-po i nt:
float!ng-point: 

str i ng
character-stri ng: 
bi t-s t r i ng:

punctuators : 

opera tors
a r i thme tic: 
re1 a t i ona1: 
logical: 
str Ln g: 
qua 1i f i er:

picture:

i sub:

% i n c1u de:

X DECLARE RATE_OF_CHANGE TABLE$SUM2

59 18. 6.8923 .0030
8.23E+3 IE-5

1101B 101.B 10011.101B .0001B
101.0001E+2B 1111E-5B

591 18.1 6.89231 .00301
8.23E+3I IE —51

1101BI 101.Bl 10011.101BI .0001BI
101.0001E+2BI 1111E-5BI

" ABC1’ 
”110”B

"SAY ’"'NO"" n

(36)"1"B ”"B
(5)"X" mi

"S999V.99" "$$$$9V.99CR"

1SUB 5SUB

^INCLUDE TABLE; ^INCLUDE "RD>X>SM";

separator 
space: 
comment:

(BLANK, TAB, AND NEWLINE CHARACTERS) 
/* IGNORE THIS MESSAGE. */

The complete set of punctuators and operators and 
other lexemes are given at the right.

representative examples of
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STATEMENTS

A program can be viewed as a sequence of statements. The notion of the 
statement is one of the important features of the high-level languages. A PL/I 
programmer thinks of the statement as the executable unit of programming just as 
an assembly language programmer thinks of the hardware instruction as the 
executable unit of assembly language programming. Yet a single PL/I statement 
generally corresponds to about a half-dozen hardware instructions -- sometimes 
less, often more. Therefore, from a programmer’s point of view, the use of PL/I 
instead of assembly language reduces the number of executable units in a program 
by a large factor.

The Statement Prefix

The following syntax rules apply to all PL/I statements:

A s tatement i s a pref i x, fo11 owed by a s tatement body, fo11 owed by a 
semi colon.

The pref i x of a statement consists of an optional sequence of 
cond i t i on pref i xes followed by an optional sequence of 1abe1 pref i xes.

A condi t i on prefix is a parenthesized list of cond i t i on prefix names 
separated by commas and followed by a colon.

A 1abe1 pref i x is an identifier followed by a colon.

CONDITION PREFIXES

The purpose of a condition prefix is to alter the set of conditions that 
are enabled during the execution of a statement or a block. When a condition is 
enabled, the corresponding error checking is performed with the resulting 
enhancement of the debugging process. When a condition is disabled, checking 
for the corresponding error condition is not performed and the program executes 
at less cost. Consider the statement:

(SUBSCRIPTRANGE, NOSIZE): Z( I ) = ALPHA;

The SUBSCRIPTRANGE condition prefix name enables the corresponding condition 
and, in effect, forces the processor to check to see if the value of I is 
outside the range of the bound of the array Z; that policy is good for debugging 
and bad for optimization. On the other hand, the NOSIZE condition prefix name 
disables the size condition and frees the processor from the responsibility for 
detecting a value of ALPHA whose magnitude is too large for an element of the 
array Z; that policy is bad for debugging but good for optimization. Further 
details are given in the section on "Condition Handling".

LABEL PREFIXES

The purpose of a label pref i x is to declare a program address constant name 
and to specify its value. Three cases apply:

If a label prefix is in a PROCEDURE or ENTRY statement, then the 
identifier is declared as an ENTRY CONSTANT.
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If the label prefix is in a FORMAT statement, then the identifier is 
declared as a FORMAT CONSTANT.

If the label prefix is in the prefix of any statement not mentioned in 
the preceding cases, then the identifier is declared as a LABEL 
CONSTANT.

The classification just given indicates that, although the terminology "label 
prefix" is convenient, the identifier in a label prefix is not necessarily a 
label constant. Further details are given in the section on "Program Flow".

The Statement Body

There are about 25 different kinds of statements in PL/I; but the 
statements make extensive use of a small repertoire of components and obey some 
simple rules. The observations that follow are not recommended for study or 
memorization; instead, they are intended to assist the reader in recognizing the 
patterns that make the syntax of PL/I relatively easy to read.

• Keywords. Except for the assignment statement and the null statement, 
every statement body begins with a keyword. The complete syntax for 
each statement is given in Appendix A, and the entries in that 
appendix are arranged in alphabetical order according to the initial 
keyword.

• Opt ions. The main part of most kinds of statement is a sequence of 
opt i ons. An option is a keyword followed by something in parentheses. 
An option specifies a subcommand within a statement, and can often be 
omitted from a statement without rendering the statement invalid 
(hence the name "option"). For example, consider the statement:

PUT FILE(BETA) SKIP(2) LIST(X,Y);

This statement consists of a keyword PUT and a sequence of three 
options. When the first two options are omitted, the statement is:

PUT LIST(X,Y);

In this statement, the missing options are treated in two different 
ways. In the absence of the FILE option, PL/I assumes FILE(SYSPR I NT); 
but in the absence of the SKIP attribute, PL/I simply does not perform 
the SKIP action.

Clauses. In a rather small number of cases, a clause is used instead 
of an option. A clause is an option without the parentheses. In a DO 
statement, each clause is a keyword followed by an expression. For 
example, consider:

DO I = 1 TO 20 BY 2 WHILE(U = V);

In this statement, TO 20 and BY 2 are clauses, but WHILE(U=V) is an 
option. (A common error is to write the WHILE option as a clause, 
without the parentheses.)
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AtX.rj_bij.tes. An attribute is a keyword that is sometimes followed by 
something in parentheses. It thus resembles an option; but it is used 
to give the declaration of an identifier rather than to give a 
subcommand. Attributes appear in DECLARE statements and, in a 
restricted way, in several other kinds of statements. For example,

DECLARE X REAL FIXED BINARY PRECISI0N(8,2);

This statement contains four attributes, the last of which has a 
parenthesized list of two integers.

Spages. In a sequence of options that describe a single action (such 
as the opening of one file or the allocation of one storage unit), the 
options are separated by spaces rather than by commas. A similar rule 
applies to the attributes that describe a single i dent i f i er.

Commas. Several statements use commas to express in one statement 
what would otherwise require several statements; for example,

DECLARE X DECIMAL FlXED(8), Y FLOAT;

i s equ i va1 ent to

DECLARE X DECIMAL FlXED(8);
DECLARE Y FLOAT;

The punctuation used in such compound statements is always the comma 
(never the space), and the comma can be thought of as a ’’little 
semicolon” when it is used in this way. Although the use of one 
statement for several does save some writing effort, it does not 
change the cost of compiling or executing the statement; and there are 
some disadvantages to the use of a compound statement. A compound 
statement makes examination or editing of a program more difficult, 
and since compiler diagnostics are keyed to complete statements (not 
phrases within statements), a diagnostic for a complicated statement 
may be amb i guous.

£
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The Classification of Statements

A classification of all the PL/I statements is 
classification is according to the principal function of each 
is a section in this Reference Manual for each of the eight 
given in the classification.

given here. The 
statement. There 
kinds of statement

declarat ion
DECLARE
DEFAULT 

ass i gnment
(no keyword) 

program flow
BEGIN
END
DO
GOTO
I F
(null statement) 

procedure invocation
PROCEDURE
ENTRY
END
CALL
RETURN

cond i t i on hand 1i ng
ON
REVERT
SIGNAL 

storage management
ALLOCATE
FREE 

stream input/output
OPEN
CLOSE
GET
PUT
FORMAT

record i nput/ou tpu t
OPEN
CLOSE
READ
WRITE
DELETE
REWRITE
LOCATE

DCL X FIXED DEC(5,2) STATIC INITIAL(l);
DFT (VARIABLE & RANGE(O) CHARACTER(1);

X(1-3) = Y*(SIN(THETA)-OMEGA);

BEGIN;
END;
DO K = 1 TO N+5 WHILE(M<0);
GOTO LAB;
IF BETA = -2 THEN Q = R-S; ELSE Q = 0;

P: PROC(X,Y) RETURNS(FLOAT);
Q: ENTRY(Al,A2);

END;
CALL PC(A-3*PH I,H3);
RETURN(R-2*Z);

ON ENDFILE (SYSIN) GOTO EXIT2;
REVERT ENDPAGE (REPORT);
SIGNAL ERROR;

ALLOC ALPHA IN(TAB) SET(IP);
FREE Q;

OPEN FILE(AWC) PRINT LINESIZE(80);
CLOSE FlLE(TEST2);
GET FILE(WW) ED IT(X,Y)(P"XXX.99BBBBB”);
PUT FlLE(DROP) PAGE;

F: FORMAT(AdO), P"BBB--9V.99");

OPEN FILE(A) KEYED SEQUENTIAL UPDATE;
CLOSE FlLE(INSP);
READ FILE(CUST) INTO(TAIL);
WRITE FILE(REC) KEYFROM(X) FROM(Y);
DELETE FlLE(EMPLOYEE) KEY(SSNO);
REWRITE FILE(M) KEY(A3) FROM(BETA);
LOCATE BUF SET(P3) FILE(ARC);

A single example of each statement is given at the right. The selection of the 
example is necessarily arbitrary. Every example has a null prefix except for 
those statements that require at least one label prefix.
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PROGRAM STRUCTURES

There are three PL/I constructs that group a sequence of statements into a 
single program structure: the group, the PROCEDURE b1ock, and the BEGIN b1ock. 
Each of these structures can be compared to the paragraph of conventional text; 
however, they are more powerful than the conventional paragraph. The additional 
power comes from the fact that any one of these program structures can, itself, 
be regarded as a single statement. Thus a group or block can be included in the 
sequence of statements encompassed in a larger group or block. This arrangement 
of one program structure within another is called nesting.

Groups

There is just one kind of 
following fo rm:

group, the DO group. A DO group has the

A DO statement followed by

• A sequence of constructs, each of which is a statement, a group, or a 
b1ock, fo11 owed by

• An END statement.

Groups and blocks must be nested; that is, any DO statement, PROCEDURE 
statement, BEGIN statement, ENTRY statement, or END statement that is contained 
in a given DO group must be part of a complete group or block that is contained 
in the given DO group.

The simplest application of a DO group does nothing more than gather a 
sequence of statements into a single executable unit. Consider, for example, 
the following IF statement:

IF X = 0
THEN DO;

Y = 1;
Z = 2;
END;

This statement sets the variables Y and Z only if X is zero. The DO group is 
treated as a single construct governed by the IF statement. If the DO and END 
statements are omitted, then the example becomes:

IF X = 0
THEN Y = 1;

Z = 2;

Now the meaning is different; the example consists of two statements, and the 
assignment to Z occurs regardless of whether X is zero or not. Therefore, the 
layout of the revised example is misleading and it should be written as follows:

IF X = 0
THEN Y = 1;

Z = 2;

This layout makes it clear that only the assignment to Y is governed by the IF 
statement.
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In the more complicated applications of a DO group, it not only gathers a 
sequence of statements into a single executable unit, but also executes the 
statements repeatedly. Consider, for example, the following group:

DO I = 1 TO 20;
A( I ) = B(N+I-1);
END;

This statement performs the assignment statement 20 times. For each execution 
of the group, the index variable, I, is 1, 2, and so on up to 21. There are 
many variations in the repeating group, and these are described later, in the 
section on "Program Flow".

B1ocks

There are two kinds of blocks: the PROCEDURE block and the BEGIN block. 
They have the following form:

• A PROCEDURE statement or BEGIN statement, depending on whether the 
block is a PROCEDURE or BEGIN block, followed by

• A sequence of constructs, each of which is a statement, a group, or a 
block, followed by

• An END statement.

An ENTRY statement can appear in a PROCEDURE block. Aside from this, any DO 
statement, PROCEDURE statement, BEGIN statement, ENTRY statement, or END 
statement that is contained in a given block must be part of a complete group or 
block that is contained in the given block; that is, groups and blocks must be 
nested.

The two kinds of block both define a scope for the declaration of 
identifiers. Within a given scope, an identifier can have a meaning that is 
entirely different from the meaning of the same identifier outside of the given 
scope. Thus a programmer can write a procedure that is intended for use within 
a large program without concern for conflict between his use of identifiers and 
that of other programmers. In addition, he can indicate by his use of scopes 
the distinction between a variable that is used just in a small procedure and 
one that is used throughout the procedure he is writing. The importance of 
scopes is so great that PROCEDURE blocks and BEGIN blocks are discussed together 
here, even though they are quite different in the way they are executed.

A PROCEDURE block is executed as a closed subroutine; that is, it is 
executed by means of a CALL statement or a function reference, and not when flow 
reaches it from the preceding statement. In contrast, a BEGIN block is executed 
in-line; that is, it is executed when flow reaches it from the preceding 
statement or by transfer of control to its BEGIN statement. (The BEGIN block in 
an ON statement is treated in a special way.)
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Of the two kinds of block, the PROCEDURE block is by far the most 
important. A PL/I program is a collection of one or more procedures, and every 
subroutine within a program is written as a PROCEDURE block. Consider the 
fol lowing example:

P: PROC;
DCL (X,Y,Z) FLOAT;
DCL (SYS 1Nz SYSPRINT) FILE;
GET L1ST(X, Y);
CALL DIST(X,Y,Z);
PUT LIST(Z);

DI ST: PROCCC1,C2, R)
DCL (C1,C2,R) FLOAT;
DCL SQRT BUILTIN;
R = SQRT(C1** 2 + C2* * 2 );
END;

END;

This example is a PROCEDURE block and it is a complete program. It contains a 
smaller PROCEDURE block that is a subroutine, and that is invoked by the CALL 
statement. A complete discussion of PROCEDURE blocks is given later, under 
’’Procedure Invocation”.

A BEGIN block is rarely used. It is sometimes essential in an ON 
statement, as described later under ’’Condition Handling". Usually, however, a 
need to gather statements can be handled better by a DO group or a PROCEDURE 
block. It is not unusual for a large program to be written without the use of 
any BEGIN blocks.

Summary of the Program Structures

The following table shows various properties of the three kinds of program
structure:

reached by sequential

Group BEGIN Block Procedu re

Gathers statements into yes yes yes
a single executable unit.•

Can iterate the yes no no
gathered statements.

Is executed/skipped when executed executed s ki pped

declaration of identifiers.

flow of contro1.

Can be called as a 
closed subrouti ne.

no no yes

Defines a scope for the no yes yes
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EXTERNAL PROCEDURES AND THE PROGRAM

Throughout most of this manual, the terms ’’external procedure" and 
"program” are used interchangeably. No harm comes from that, because a single 
external procedure can be executed as a program. In the following paragraphs, 
however, the distinction between the two terms is described in detail.

An external procedure is a procedure that is not contained in any larger 
PL/I construct. It is called ’’external" precisely because it is not contained 
inside any other PL/I construct. An external procedure can contain other 
procedures; and these latter procedures are all internal procedures.

A program is a set of one or more external procedures that are executed in 
concert. Each external procedure is written and compiled separately; and with 
the use of appropriate control cards (as described in Section V of the PL/I 
User's Guide, entitled "Loader”), a single executable unit will be produced.

Any program can be written as a single external procedure; and in that 
case, the distinction between a program and an external procedure is not very 
important. But there are good reasons to divide a program of medium or large 
size into several external procedures. The reasons are:

• Ina large project involving more than one programmer, it is important 
to be able to compile and test parts of a program separately.

• For programs of considerable size, compilation in parts is less 
expensive than compilation of the whole; this is simply a fact of 
compiler technology. Furthermore, when a program becomes very large, 
it exceeds the capacity of the compiler and cannot be compiled as a 
who 1 e.

• To change a single statement of an external procedure the entire 
external procedure must be recompiled. The smaller the external 
procedures, the smaller the cost of making an isolated change.

The division of a program into external procedures can be carried to an 
undesirable extreme. When the division results in variables being shared 
between the two external procedures, these variables must be EXTERNAL variables 
or procedure parameters; and the implementation of such variables is relatively 
expensive. In the absence of other guidance, external procedures should be kept 
between 100 and 1000 lines in length.
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SECTION VI

DECLARATIONS

The use of a name in a program is a name reference and each name reference 
has a dec 1 ar a 11 on. The declaration provides two items of information. First, 
it gives a set of attributes and (in the case of a structure variable) level 
numbers. Second, it associates the name reference with a particular block. 
Later sections of this manual describe how declarations are used in the 
interpretation of the different kinds of name references. This section 
describes the mechanism that supplies the dec 1arations.

Each occurrence of a name in a program 
uses a declaration. Consider the following

either suppli e s a declaration or
fragment of a program:

DCL X FLOAT;

X = 5;

In this example, the first occurrence of X supplies 
second occurrence of X makes use of that declaration. If 
were not supplied in this way, then the assignment 
i n ter pre ted.

a declaration, and the 
the declaration of X 
statement could not be

With one exception, the declaration of a name reference is determined by 
the PL/I compiler, once and for all, before a program is executed. .The 
exception is for a variable extent: a variable array bound, a variable maximum 
string length, or a variable area size. To determine the declarations of the 
name references in a program, the compiler makes repeated use of two operations: 
the es tabl i shmen t of a declaration and the resolution of a n am e reference.

This section has three main parts. First, the constructs used for the 
establishment of declarations are described. Next, the rules for the resolution 
of names are presented. Finally, diagrams that show all possible declarations 
of names are provided and a complete classification of the attributes is given.

THE ESTABLISHMENT OF DECLARATIONS

This discussion begins with an 
constructs that are used in establishing

example; then it describes the program 
dec 1arat i ons.
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A Preliminary Example of the Establishment of Dec 1arations

The following program contains several examples of 
dec 1 ara t i ons:

the establishment of

P: PROC;
DCL X FLOAT;
DCL (SYS IN,SYSPR I NT) FlLE;

L2: GET LIST(X);
CALL 0;
IF XA = 0 THEN GOTO L2; ELSE RETURN;

Q: PROC;
DCL L2 FLOAT;
L2 = X**2 - 3*X**2;
PUT SKIP LIST(X,L2) ;
END;

END;

The program has two blocks, which can conveniently be called the "outer block” 
and the ’’inner block”. The declarations explicitly established in the program 
are as foilows:

• In the outer block:

X with the attribute FLOAT
SYSIN with the attribute FILE
SYSPRINT with the attribute FILE
L2 with the attribute LABEL INTERNAL CONSTANT
OUT with the attributes ENTRY INTERNAL CONSTANT

• In the inner block:

L2 with the attribute FLOAT

• In an imaginary BEGIN block that encloses the entire program:

P with the attributes ENTRY EXTERNAL CONSTANT

More is said of the "imaginary” block later in this section.

Observe that two declarations are established for the identifier L2 and 
that the identifier is used in two different ways. Such a double use is not 
attractive when the uses are so close together; but in a large program, the 
repeated use of a single identifier is difficult to avoid. When the subject of 
resolution is discussed later in this section, the way in which PL/I decides 
which declaration applies to a particular use of L2 is given.
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Containment and Immediate Containment

The establishment of declarations depends on the definitions of contai nment 
and i mmed i ate conta i nment. The definitions follow:

An occurrence of a program construct (such as a statement, a label 
prefix, or a name) is con ta i ned i n a block if it is part of the 
PROCEDURE or BEGIN statement with which the block begins, part of the 
END statement with which the block ends, or part of any statement in 
between. However, there are two exceptions. First, any label 
prefixes in the PROCEDURE or BEGIN statement that begins a given block 
are not contained in the given block. Second, any label prefixes in 
an ENTRY statement that is part of a given block but not part of a 
smaller block are not contained in the given block.

An occurrence of a program construct is i mmedlately con ta i ned i n a 
given block if it is contained in the given block but not in any 
smaIler block.

In the establishment of declarations, these definitions are used to determine 
which block immediately contains a given DECLARE statement or label prefix.

As an example of the application of these definitions, consider the 
following program:

P: PROC;
----- J DCL (SYS IN, SYS PR I NT) FILE;

DCL (X,Y,Z) FLOAT;
GET LIST(X,Y);
IF X = 0

THEN CALL Q1(X,Y,Z);
ELSE CALL Q2(X,Y,Z);

PUT LIST(X,Y,Z);

^contai ned 
the outer 
procedure

LAB:

PROC(A,B,C);
DCL (A,B,C) FLOAT;
... (Compu ta t ion #1) 
GOTO LAB;

ENTRY(A,B,C);
... (Compu ta t ion # 2)

conta i ned 
the inner 
procedure

BEG IN;
DCL (G1,G2) FLOAT;
... (Compu ta t ion #3) 
END;

con ta i ned 
the BEGIN 
block

END;

END;

i n

This program is composed of three blocks; they can be referred to as the ’’outer 
procedure", the "inner procedure", and the "BEGIN block". The three outlines 
show which portions of the program are contained in each of the three blocks.
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The following observations are typical of those necessary for 
establishment of dec 1 arations:

the

The label prefix ’P:1 is not contained in any of the three blocks, but 
it is contained in an imaginary BEGIN block that is considered to 
enclose the entire program.

The first two DECLARE statements are immediately contained in the 
outer procedure.

The label prefixes ’QI:’ and ’Q2:’ are immediately contained in the 
outer procedure (and are not contained in the inner procedure); this 
is true even though ’Q2:’ occurs in the midst of the inner procedure.

• The third DECLARE statement and the label prefix ’LAB:’ are contained 
in both the outer and inner procedures, but they are immediately 
contained in the inner procedure only.

• The fourth DECLARE statement is contained in all three blocks; but it 
is immediately contained in the BEGIN block only.

The imaginary BEGIN block mentioned in connection with the declaration of P 
is a definitional artifice that makes the rules for the establishment of 
declarations simpler. The external procedures of a program are thought of as 
being enclosed in an imaginary BEGIN block. All of the entry constant names for 
the external procedures are declared in this BEGIN block.

The DECLARE Statement

The principal means for establishing a declaration is the DECLARE 
statement. As the keyword DECLARE suggests, the statement is devoted to 
supplying information. When a DECLARE statement is encountered in the course of 
program execution, it produces no action.

A DECLARE statement gives one 
associates a set of attributes with 
the block that i mmed i a te1y con ta i ns

or more declarations. Each declaration 
a name. The declarations are established in 
the DECLARE statement.

The DECLARE statement is available in several forms. In many cases, a 
DECLARE statement is a simple declaration of a scalar or array variable name. 
When a structure variable is declared, a special form of the DECLARE statement 
is required. In order to reduce the amount of writing required, declarations 
can be comb i ned and factored. These forms of the DECLARE statement are 
discussed in the following paragraphs.

SIMPLE DECLARATIONS

The simplest form of a DECLARE statement is the keyword DECLARE, a name, a 
sequence of attributes, and a semicolon. Two examples are:

DECLARE ALPHA_P5 DECIMAL FLOAT STATIC;

DECLARE X;
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The effect of the first statement is to establish in the immediately containing 
block a declaration of ALPHA—P5 with attributes DECIMAL FLOAT STATIC. The 
second, statement, establishes in the immediately containing block a declaration 
of X with no attributes. In both cases, the attributes not given in the DECLARE 
statement are filled in by PL/I according to default rules.

The following statement declares an array variable name:

DECLARE BETA DI MENS I ON(3*N+1) FLOAT CONTROLLED;

When the DIMENSION attribute immediately follows the declared identifier, the 
keyword DIMENSION can be omitted. Thus this statement is usually written as

DECLARE BETA(3*N+1) FLOAT CONTROLLED;

The effect of this statement is to establish in the immediately containing block 
a declaration of BETA with the attributes DI MENS I ON(3*N+1) FLOAT CONTROLLED. 
The expression f3*N+l’ is not evaluated when the declaration is established 
(before program execution); instead it is evaluated when storage for the array 
is allocated (during program execution).

STRUCTURE DECLARATIONS

Most names can be declared by means of the simple form of declaration just 
described. The only exception is the declaration of a structure va r i a b1e name. 
The declaration of a structure requires the declaration of several names; one 
for the entire structure, others for its members, yet others for the members of 
each of its members, and so on. Each name is declared in a dec 1 ar at i on clause, 
which consists of a level number, the name itself, and a sequence of attributes. 
All of the names for a given structure must be in the same DECLARE statement, 
and the declaration clauses are separated by commas.

Consider, for example, 
SUBSCRIBER:

the following declaration of the structure variable

DECLARE 01 SUBSCRIBER EXTERNAL, 
02 NAME,

03 FIRST CHAR(15) VAR,
03 INITIAL_OF_MIDDLE CHAR(l),
03 LAST CHAR(25) VAR,

02 SERIAL-NUMBER DECIMAL(9);

This s ta temen t 
declarations in

contains six declaration clauses, 
the immediately containing block:

It establishes the following

9 SUBSCRIBER, a structure with the attributes EXTERNAL and with members 
NAME and SERIAL-NUMBER

® NAME, a structure with no attributes and with members FIRST, 
INITIAL OF MlDDLE, and LAST

9 FIRST, a scalar with attributes CHAR(15) VAR

9 INITIAL_OF—MIDDLE, a scalar with attribute CHAR(1)

9 LAST, a scalar with attributes CHAR(25) VAR

9 SER IAL_NUMBER, a scalar with attributes DECIMAL(9)
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SHORT FORMS OF DECLARATIONS

A major portion of a PL/I program is devoted to DECLARE statements, so PL/I 
has several features designed to shorten declare statements. The sole purpose 
of these features is to reduce the size of a program and thus make it easier to 
write and to read. The features do not have any effect on the cost of executing 
the program.

Abbreviations and Defaults

A useful feature is the abbreviation of the keyword DECLARE to DCL. A 
second feature is the provision of many abbreviations and defaults for 
attributes. The designers of PL/I selected the defaults to cover the most 
commonly required attributes. It follows that when an identifier is used in 
some ordinary way not many attributes need be written explicitly. For example, 
in the DECLARE statement:

DCL Q72 FLOAT STATIC;

the programmer has omitted the defaults REAL BINARY PRECISI0N(27) ALIGNED 
INTERNAL VARIABLE because these are supplied by default. The defaults for the 
storage type attributes are given in the section on "Value Storage". Other 
default rules are given in the section on "Storage Management".

Combining Declarations

A sequence of DECLARE statements can be combined into a single DECLARE 
statement. Consider the statements:

DCL X FLOAT;
DCL ALPHA FIXED DEC(10);
DCL Q3 FLOAT;

A single, equivalent statement is:

DCL X FLOAT, ALPHA FIXED DEC(10), Q3 FLOAT;

Factoring Declarations

Common attributes can be factored from individual declarations in a 
combined DECLARE statement. Another equivalent form for the DECLARE statement 
above i s:

DCL (X,Q3) FLOAT, ALPHA FIXED DEC(10);

This feature is called factoring because it is similar to the mathematical 
operation of factoring out a common multiplier from a sum.
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Factoring can be applied more generally than the preceding example 
indicates. Factoring can be app1ied repea ted 1y to the same statement. For 
example, the statement:

DCL X FLOAT STATIC, Y FLOAT STATIC, Z FLOAT;

can be written equivalently as:

DCL (X STATIC, Y STATIC, Z) FLOAT;

and then as:

DCL ((X, Y) STATIC, Z) FLOAT;

The result has two attributes in it instead of the original five.

Factoring can also be applied to the level numbers used in the declaration 
of a structure name; the only difference is that level numbers are factored to 
the left while attributes are factored, as before, to the right. For example, 
the statement:

DCL 01 POSITION, 
02 X FLOAT, 
02 Y FLOAT, 
02 Z FLOAT;

can be wr i t ten as:

DCL 01 POSITION, 
02 (X, Y, Z) FLOAT;

GUIDELINES FOR DECLARE STATEMENTS

A DECLARE statement can be placed anywhere in the block in which its 
declaration is to be established, provided it is immediately contained in that 
block. It is suggested, however, that all DECLARE statements be placed 
immediately after the PROCEDURE or BEGIN statement that begins the block. If 
this convention is followed, a human reader always knows where to look for the 
DECLARE statements and the DECLARE statements do not clutter up the portion of 
the block which is devoted to executable statements.

The extensive use of the combination and factoring of DECLARE statements 
can make a program difficult to read, debug, and correct. Furthermore, the GCOS 
PL/I compiler keys its diagnostics to statements, not to individual 
dec 1 arations; therefore, a diagnostic message about a DECLARE statement with 
several declarations can be ambiguous. Some programmers avoid combination and 
factoring of declarations entirely and use one DECLARE statement for each 
variable they declare.

The use of the outline layout of the declaration-of structures, as shown in 
the examples in this section, is recommended. The leading zero in each level 
number is not required in PL/I; it is a stylistic device carried over from COBOL 
by some PL/I programmers. It has the advantage that it dist:nguishes the level 
numbers, which do not partake in the computational activity of PL/I, from the 
arithmetic constants.
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Labe 1 Pr ef i xes

A second means for establishing a declaration is the 1abe1 pref i x. A label 
prefix is an identifier followed by a colon and it always occurs immediately 
before a statement body or another label prefix. It is useful to have a common 
term, "label prefix" for all uses of this construct; but, in fact, the 
identifier in a label prefix can be a label constant name, an entry constant 
name or a format constant name.

LABEL CONSTANT NAMES

When a label prefix occurs before any statement except a PROCEDURE, ENTRY, 
or FORMAT statement, the identifier in the prefix is a label constant name. An 
effect of the label prefix is to establish in the immediately containing block a 
declaration of the identifier as LABEL INTERNAL CONSTANT. Another, more 
fundamental effect, is to label the statement so that it can be the destination 
of a transfer of control; that effect is described later, in the section on 
"Flow of Control".

A parenthesized, optionally-signed integer can be used in a label prefix as 
a subscript to a label constant name. A given identifier can appear in several 
label prefixes in a single block provided each appearance has a different 
subscript. The effect of the set of label prefixes with the given identifier is 
to establish a single declaration of the identifier as LABEL INTERNAL CONSTANT 
DI MENS I ON (J_l: j_2), where i 1 is the smallest integer used as a subscript and i 2 is 
the largest.

As an example of the use of label prefixes to declare label 
consider the following procedure:

constant names,

MES: PROC(I);
DCL SYSPRINT FILE;
DCL I FIXED;
GOTO LAB(I);

LAB(14): PUT LIST("X IS TOO BIG"); GOTO EXIT;
LAB(-3): PUT LIST("Z3 IS NEGATIVE"); GOTO EXIT;
LAB(l): PUT LIST("A EXCEEDS X"); GOTO EXIT;
EXIT: END;

The label declarations established in this procedure are:

LAB, with attributes LABEL INTERNAL CONSTANT DI MENS I ON(-3, 1U)

EXIT, with attributes LABEL INTERNAL CONSTANT

ENTRY CONSTANT NAMES

When a label prefix occurs before a PROCEDURE statement or an ENTRY 
statement, the identifier in the prefix is an entry constant name. In the event 
that the procedure has neither arguments nor a result, the effect of the label 
prefix is to establish in the immediately containing block a declaration of an 
identifier with the attributes ENTRY INTERNAL CONSTANT or ENTRY EXTERNAL 
CONSTANT. When the procedure has arguments or a result, the attributes of the 
arguments or the result is included in the declaration of the entry constant 
name.
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As an example of the use of label prefixes to declare entry constant names, 
consider the following procedure, which is assumed to be contained in some 
larger block:

REP: PR0C(S,CNT) RETURNS(CHAR(1000) VAR);
DCL S CHAR(IOOO) VAR;
DCL CNT FIXED;
DCL I FIXED;
I = CNT;
GOTO LI;

REP2: ENTRY(S) RETURNS(CHAR(1000) VAR);
I = 1;

LI:
END;

The first two label prefixes establish the following declarations in the block 
(not shown) that immediately contains this procedure:

REP with attributes ENTRY(CHAR(1000) VAR, FIXED) 
RETURNS(CHAR(1000) VAR) INTERNAL CONSTANT

REP2 with attributes ENTRY(CHAR(1000) VAR)
RETURNS(CHAR(1000) VAR) INTERNAL CONSTANT

The attributes for REP were obtained by making two changes in the PROCEDURE 
statement and adding the attributes INTERNAL CONSTANT. The changes are the 
replacement of PROCEDURE by ENTRY and the replacement of each parameter by the 
declaration of the parameter. The attributes for REP2 were obtained by a 
similar modification of the ENTRY statement. The declarations are established 
in the containing block because a procedure block does not contain the label 
prefixes of PROCEDURE and ENTRY statements in the procedure block.

The example just given shows that the declaration of an entry constant name 
can be long. Its purpose is to supply information needed to convert values 
supplied as arguments and to accept the value produced as a result. More is 
said of this later, in the section on "Procedure Invocation".

Suppose the procedure just given is not contained in some larger block 
was previously assumed) but is itself an external procedure. This change 
two effects. First, the declarations established for both REP and REP2 
changed by replacing INTERNAL by EXTERNAL. Second, the declarations of REP 
REP2 are established in the imaginary BEGIN block that encloses the program.

( as 
has 
are 
and

FORMAT CONSTANT NAMES

When a label prefix occurs before a FORMAT statement, the identifier in the 
prefix is a format constant name. An effect of the label prefix is to establish 
in the immediately containing block a declaration of an identifier with the 
attributes FORMAT INTERNAL CONSTANT. The role of FORMAT statements in PL/I is 
rather limited and is described under "Stream Input/Output".

6-9 DE05



Contextual and implicit Declarations

A declaration that is established by a DECLARE statement or a label prefix 
is called an exp 1i c i t declaration. PL/I allows declarations to be established 
in other ways, and these declarations are con tex tua1 or i mpli ci t. A con textua1 
declaration is one that is indicated by the way in which an identifier is used; 
an implicit declaration is a last resort used when no other basis for 
establishing a declaration can be found.

AN EXAMPLE OF CONTEXTUAL AND IMPLICIT DECLARATIONS

An example of a program that uses contextual and implicit declarations is:

A: PROC;
DO I = 0 TO 90;

PUT FI LE(SYS PR I NT) SKIP LIST(SI ND(I ));
END;

END;

This program fails to give explicit declarations for SYSPRINT, SIND, and I. The 
PL/I compiler assumes that declarations for these names should be established in 
the outermost block of the external procedure (the only block in this case) and 
supplies attributes as follows:

SYSPRINT occurs in a FILE option; since only a FILE value can occur in 
this context, the compiler supplies the attributes FILE CONSTANT as a 
contextual declaration.

SIND occurs as a function or array name; since SIND is the name of a 
built-in function, the compiler supplies the attribute BUILTIN as a 
contextual declaration.

I occurs in a context which does not unambiguously indicate its 
declaration; therefore the compiler supplies no attributes, and the 
declaration is implicit. According to the default rules, a name with 
no attributes is assumed to be REAL FIXED BINARY (17,0).

It follows that the 
in which all identifiers

example program is equivalent 
are explicitly declared:

to the following program,

PROC;
DCL SYSPRINT FILE;
DCL SIND BUILTIN;
DCL I ;
DO I = 0 TO 90;

PUT FI LE(SYSPRINT) SKIP LIST(SI ND( I ));
END;

END;
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GUIDELINES FOR CONTEXTUAL AND IMPLICIT DECLARATIONS

The example just given shows that contextual and implicit declarations make 
a short PL/I program much shorter. However, in a larger, more realistic 
program, the use of contextual or implicit declarations can mask errors in the 
program. Contextual and implicit declarations are implemented in GCOS PL/I and 
mentioned here because they are part of Standard PL/I. However, the GCOS PL/I 
compiler prints a warning message for each such declaration, and it is 
recommended that every name in a GCOS PL/I program be explicitly declared by a 
DECLARE statement or a label prefix.

declaration of names: the LIKE attribute and the DEFAULT statement. The LIKE 
attribute is recommended for the rather special situations to which it applies, 
and it is fully described here. In contrast, the DEFAULT statement is not 
recommended, and only a few examples are given here rather than a full 
def i n i t i on.

Speci al Faci1i t:ies for Declaration

PL/I has two facilities that are designed to assist programmers in the

THE LIKE ATTRIBUTE

The LIKE attribute asserts that the members of a given structure have the 
same declarations as the members of some other structure. For example, consider 
the LIKE attribute in the following program:

P: PRO C•
DCL 01 ALPHA(IOOO) EXTERNAL STATIC, 

02 X FLOAT, 
02 Y CHAR( 16) ;

DCL 01 BETA LIKE ALPHA;
• • •
END;

The second DECLARE statement is equivalent to:

DCL 01 BETA,
02 X FLOAT, 
02 Y CHAR(16);
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The Form of the LIKE Attribute

The LIKE attribute has the following form:

LIKE Ir

where 1r is the 1i ke reference. The like 
of names separated by periods. A use 
following restrictions:

reference must be a name or a sequence 
of the LIKE attribute must satisfy the

The LIKE attr i bu te can be used only in a DECLARE statement.

The LIKE attribute can apply only to a structure name; that is, it 
must appear in a declaration clause that begins with a level number.

A structure declaration with a LIKE attribute must not be followed by 
a member declaration. That is, if the declaration clause that 
contains the LIKE attribute has level number n, then the immediately 
following declaration clause must not have a level number that is 
greater than _n.

It must be possible to resolve 
according to the rules for 
later in this section.

the like reference in a LIKE attribute
the resolution of name references given

The structure designated by the like reference must not 
attribute. That is, a LIKE attribute cannot be defined 
some other LIKE attribute.

contain a LIKE
i n terms of

The Interpretation of the LIKE Attribute

A LIKE attribute is interpreted by the compiler. First, the like reference 
is resolved; the result is the declaration of a structure. The designated 
declaration consists of a declaration clause for the structure name itself 
followed by a sequence of declaration clauses for the members of the structure, 
the members of the members of the structure, and so on. The compiler copies the 
sequence of member declaration clauses into a position immediately after the 
declaration clause that contains the given LIKE attribute; then it deletes the 
LIKE attribute. The final result is a complete declaration of a structure.

The designated declaration clauses are copied literally, before any 
attributes are filled in by the various default mechanisms of PL/I. The level 
numbers are adjusted, if necessary, to assure that the declaration clause for a 
member has a higher number than that for the containing structure. Within a 
given block, the result of interpreting one LIKE attribute is not used in 
interpreting another LIKE attribute; such possibilities are ignored when a like 
reference is resolved.

6-12 DE05



Examples of the LIKE Attribute

The following program contains three examples of the use of the LIKE 
attribute:

P • P RO C *
DCL 01 CUST0MER(1000) EXTERNAL CONTROLLED, 

02 IDENT,
03 NAME(3) CHAR(30),
03 NUMBER PIC"999B99B9999", 

02 BALANCE DEC(8, 2);
DCL 01 CURRENT BASED LIKE CUSTOMER;
DCL 01 I DENT—LIST(20) LIKE CUSTOMER.I DENT;
DCL 01 IDENT_PAIR EXTERNAL STATIC, 

02 OLD LIKE CUSTOMER.I DENT, 
02 NEW LIKE CUSTOMER.I DENT;

• • •
END;

The last three DECLARE statements are interpreted as follows:

DCL 01 CURRENT BASED,
02 IDENT,

03 NAME(3) CHAR(30),
03 NUMBER PIC"999B99B9999", 

02 BALANCE DEC(8,2);
DCL 01 IDENT_LIST(20),

02 NAME(3) CHAR(30),
02 NUMBER PIC"999B99B9999";

DCL 01 IDENT_PAIR EXTERNAL STATIC,
02 OLD,

03 NAME(3) CHAR(30),
03 NUMBER PIC'’999B99B9999’', 

02 NEW,
03 NAME(3) CHAR(30),
03 NUMBER PIC”999B99B9999”;

Guidelines for the LIKE Attribute

A LIKE attribute
used only when there is

should not be used merely to save writing; it should be
a close relationship between structure variables.

THE DEFAULT STATEMENT

A DEFAULT statement is a rule for adding attributes to the declaration of a 
name, a constant literal, a parameter, or the returned result of a procedure. 
The statement applies to every such declaration within its scope.
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A DEFAULT statement is composed of a default test, which examines the 
attributes already present in a given declaration, and a sequence of defau1t 
attributes that are added to the given declaration when the default test is 
satisfied. A DEFAULT statement is fully interpreted by the compiler, and it has 
no direct action when a program is executed.

The definition of the DEFAULT statement is not given in this 
appears in the PL/I Language Manual. A few examples are given here, 
order to provide a brief introduction to the statement.

manua1; it 
howeve r, in

Examples of the DEFAULT Statement

As an example of the use of a DEFAULT statement, suppose it is necessary to 
use double precision for binary floating-point values in a certain block. The 
following statement can be used to achieve the desired effect by introducing a 
new default for the number-of-digits:

DEFAULTCFLOAT & ADEC & APREC) PREC(63);

This statement means "wherever a FLOAT attribute is present and a DECIMAL
attribute is not present and a PRECISION attribute is not present, insert the
PRECISI0N(63) attribute".

The example just given requires some discussion. Why not use BIN instead 
of aDEC? And why use APREC at all? The answer is that a default test must be 
written very carefully to cover all possible cases. Consider the following 
statement:

DCL X FLOAT;

Even though the system defaults will eventually add BINARY to this declaration, 
they are applied after, not before, the DEFAULT statement is applied. 
Therefore, the use of BIN in the default test instead of ADEC would miss this 
declaration of X. Next, consider:

DCL Y FLOAT PREC(30);

A DEFAULT statement adds an attribute rather than replacing an attribute. If 
the aPREC is omitted from the default test, then the DEFAULT statement applies 
to this declaration of Y and the result is:

DCL Y FLOAT PREC(30) PREC(63);

This is an invalid DECLARE statement.

A DEFAULT statement can be used to exclude certain dec 1 arations; for 
examp 1e:

DEFAULT(COMPLEX) ERROR;

6-1U DE05



This statement means ^wherever a COMPLEX attribute is present, the program is in 
error . When the default test is satisfied for this DEFAULT statement, the 
compiler prints a diagnostic message. This example suggests that the DEFAULT 
statement could be used to enforce the use of a subset of PL/I. However, the 
DEFAULT statement is too limited to cover many such cases. For example, there 
is no way to require that a FIXED BINARY value have a zero scale factor.

As a third example of a DEFAULT statement, consider the following:

DEFAULT(a(RANGE(I:N))
& A(CONSTANT!BUI LT IN!CONDITI ON!GENERIC)
& A(CHARACTER!BIT!POINTER!OFFSET!AREA!LABEL!ENTRY!FILE)
& a(fixeD!DECIMAL!PRECISION))
FLOAT Bl NARY PREC(27);

This statement is complicated because it must cover all possible cases; however, 
it means that an arithmetic variable that does not begin with IJKLMN is assumed 
to be FLOAT BINARY PRECISI0N(27) when attributes to the contrary are not given. 
When used in conjunction with the system defaults, it approximates the handling 
of variable names in FORTRAN.

Guidelines for the DEFAULT Statement

The examples of the DEFAULT 
to use. The problems with the

statement just given show that it is difficult
DEFAULT statement can be summarized as follows:

It is too deep. The DEFAULT statement is applied after certain 
special defaults are applied and before the standard system defaults 
are applied; furthermore, the order in which several DEFAULT 
statements are written can affect their results.

It is too limited. The test in a DEFAULT statement is not powerful. 
Many useful defaults cannot be programmed and others can be programmed 
only in an indirect and complicated way.

It is unnecessary. PL/I already has an elaborate set of standard 
system defaults. A departure from those defaults introduces unwelcome 
comp 1i ca t i ons.

For these reasons, the use of the DEFAULT statement is not recommended.

THE RESOLUTION OF NAME REFERENCES

This discussion of the resolution of name references begins with an 
example; then the specific definitions and rules for resolution are given.
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A Preliminary Example of the Resolution of Name References

For examples of the resolution of names, consider once again the 
program, which was given at the beginning of this section:

fol 1owing

P: PROC;
DCL X FLOAT;
DCL (SYS 1N,SYSPRINT) FILE;

L2: GET LIST (X);
CALL Q;
IF XA = 0 THEN GOTO L2; ELSE RETURN;

Q: PROC;
DCL L2 FLOAT;
L2 = X**2 - 3*X**2;
PUT SKIP LIST(X,L2);
END;

END;

Consider the five instances of the name L2 in this program. One instance 
is in a label prefix and another is in a DECLARE statement; these establish 
declarations for L2. Two instances of L2 remain, and these instances are name 
references that are resolved as follows:

The name reference in the GOTO statement is resolved to the 
declaration of L2 that is established in the outer block; therefore, 
this name reference is associated with the outer block and has 
attributes LABEL INTERNAL CONSTANT.

The name references in the assignment statement and the PUT statement 
are resolved to the declaration of L2 that is established in the inner 
procedure; therefore, each of these name references is associated with 
the inner block and has the attribute FLOAT.

The rules under which this resolution was performed are given later in this 
section. First, however, some definitions must be given.

The Name-Sequence Set for a Declaration

Each declaration has an associated set of name sequences. If the 
declaration describes a structure variable, then the set contains the level-one 
name of the structure and also contains each sequence of names that is formed by 
starting with the level-one name and proceeding through contained level names. 
If the declaration does not describe a structure variable, then the set contains 
just one name-sequence and that name sequence is the declared name.
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Four examples of declarations and 
are given in the following table:

their associated sets of name sequences

Dec 1arat i on

DCL 01 Q( 0:5) BASED, 
02 R1 FLOAT, 
02 R2 DEC(8,2);

DCL 01 S AUTOMATIC,
02 WEF(2,M-3), 

03 P FLOAT, 
03 Q,

0U RHO(N) DEC(U), 
0U PHI FIXED,

03 R FLOAT, 
02 G(10,10,CNT) FLOAT;

DCL ALPHACN+2) FLOAT CONTROLLED;

DCL SQRT BUILTIN;

Set of Name Sequences

Q
Q.R1
Q.R2

S
S.WEF
S.WEF.P
S.WEF.Q
S.WEF.Q.RHO
S.WEF.Q.PHI
S.WEF.R
S.G

ALPHA

SQRT

The Name-Sequence for a Name Reference

Each name reference has an associated name sequence. If the name reference 
is a structure-qualified variable reference, then the associated name sequence 
is the sequence of level names in the reference. In all other cases, the name 
sequence is just the name itself.

Four examples of name references and their associated name 
given in the following table:

Name Reference Name Sequence

Q(3*N1+N2).R1 Q.R1

S.WEF(l,M-3).Q S.WEF.Q

ALPHAC 2*I-BETA) ALPHA

SQRT SQRT

The full definition of structure-qua1ified variable references 
in the section on "Expressions”.

sequences are

is gi ven 1ater,

The Applicability of Declarations

A declaration can be app1i cable to a given name reference in two ways, as
fo11ows:

The declaration is applicable if it has a name sequence that is 
identical to the name sequence for the given name reference. In this 
case, the name reference is fu11y-qu a 1i f i ed with respect to the 
decl arat i on.
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® The declaration is applicable if it has a name sequence that, after 
the omission of one or more names, becomes identical to the name 
sequence for the given name reference. If only this case applies, 
then the name reference is par t i a 11y-qua1i f i ed with respect to the 
declaration.

As a basis for some examples of applicability, consider the following 
declaration of the structure OMEGA:

DCL 01 OMEGA CONTROLLED, 
02 M,

03 SI CHAR(30),
03 S2 FIXED,

02 GAMMA FLOAT;

A complete 
fol 1ows:

list of the references to which this declaration is applicable

Fully-Qua1i f i ed

OMEGA
OMEGA.M
OMEGA.M.SI
OMEGA.M.S2
OMEGA.GAMMA

Partial 1y-Qua1i f i ed

M
OMEGA.SI
M.S1
SI
OMEGA.S2
M.S2
S2
GAMMA

The Resolution Rules

To resolve a given name reference, begin by trying to find a block that 
contains the given reference and that has an established declaration that is 
app1i cab 1e to the given use of the name reference. There are three 
possibilities, as follows:

No such block is found. In this case, the name reference is 
undeclared. The use of an undeclared name reference is not
necessarily an error in Standard PL/I; a declaration is supplied 
according to the rules for contextual and implicit declaration, 
mentioned earlier in this section. However, the use of an undeclared 
name reference is not recommended in GCOS PL/I and the compiler marks 
such a use with a warning.

Exactly one such block is found.
block and resolution proceeds as

In this case, that is the desired 
in the next paragraph.

More than one such block is found, 
the smallest of the blocks, and 
according to the next paragraph.

In this case, the desired block is 
resolution proceeds for that block

When the desired block has been found,
considered, as follows:

there are three possible cases to be

If the block contains exactly one 
declaration is the declaration 
resolution is complete.

applicable declaration, then that 
of the given name reference and
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• If the block contains more than one applicable declaration, but only 
one for which the given name reference is fully-qualified, then that 
one is the declaration of the name reference and the resolution is 
comp 1e te.

• If the block contains more than one applicable declaration but the 
preceding case does not apply, then the declaration is amb i guou s and 
the name reference is invalid.

As a basis for examples of name resolution, consider the following program:

P: PROC;
DCL X FLOAT;
DCL Y FLOAT;
... (Computati on #1)

• • •
END;

Q: PROC;
DCL 01 Sz 

02 Y FLOAT, 
02 Z DEC(8,2);

DCL 01 R, 
02 ALPHA CHAR(16) 
02 Z( 100) FLOAT;

DCL ALPHA FIXED;
... (Computati on #2)

END;

Now consider some of the references that could appear in Computation #1 or 
Compu ta t i on # 2:

In either Computation, this reference is a fully-qualified 
reference to the X declared by the first DECLARE statement in the 
outer block.

In Computation #1, this reference is a fully-qualified reference to 
the Y declared in the second DECLARE statement in the outer block. 
In Computation #2, this reference is a partia 11y-qua1ified 
reference to the first member of S declared in the first DECLARE 
statement in the inner block.

ALPHA In Computation #1, this reference is undeclared and, in GCOS PL/I, 
is contrary to recommended usage. In Computation #2, this 
reference is a partially-qualified reference to the first member of 
R and a fully-qualified reference to the ALPHA that is declared in 
the last DECLARE statement in the inner block. The reference is 
resolved to the second possibility, the ALPHA declared in the last 
DECLARE statement.

2(1) In Computation #1, this reference is undeclared. In Computation 
#2, this reference is a partially-qualified reference to the second 
member of both S and R. Both S and R are declared in the inner 
block; therefore, the reference cannot be resolved and is invalid.

Observe that the subscript in the reference Z(I) does not enter into the 
resolution of the reference, even though R.Z can have a subscript and S.Z 
cannot.
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ATTRIBUTES

PL/I has more than 50 attributes, and many combinations of these can be 
used in the declaration of a name. The following paragraphs present two views 
of attributes. First, five kinds of names are defined and the sets of 
attributes allowed for the declaration of each kind of name are given. Then a 
complete classification of the attributes is presented.

Complete Attribute Sets

There are five main kinds of names, as follows:

variable names
constant names
built-in function names
cond i t i on names
gener i c names

The different kinds of names vary widely in their importance. The variable 
names have a variety and flexibility that overshadows all other names. Constant 
names and built-in function names appear in most programs. Condition names also 
occur in most programs, but they are used in a restricted context. Generic 
names are extremely specialized and are rarely used.

The following paragraphs give the complete attr i bu te sets for each kind of 
name. A set of attributes is a valid complete declaration for a name if and 
only if it is included in one of these sets. As an example, consider one of the 
complete attribute sets for a variable name:

REAL FLOAT BINARY PRECISI ON(27) ALIGNED AUTOMATIC INTERNAL VARIABLE

Because of the default rules of the language, this attribute set can be 
shortened to:

FLOAT

However, the following paragraphs do not mention such shortened forms. They 
give only comp 1ete attribute sets, before any abbreviations or defaults have 
been applied. In practice, once an appropriate attribute set has been 
determined, it is a relatively routine job to apply abbreviations and defaults 
to shorten i t.

The complete attribute sets are given by means of diagrams. The diagrams 
use two special notations, as follows:

Braces indicate a choice; they 
which is chosen in making up a

enclose two or more lines, any
specific attribute set.

one of

Brackets indicate an option; they enclose an item that can be either 
included or omitted in making up a specific complete attribute set.

Some of the identifiers in the diagrams are underlined and some are not. 
underlined identifiers are terms that are defined in the text that follows 
diagram. The non-under1ined identifiers are attribute keywords.

The 
the
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VARIABLE NAMES

A variable name designates storage for a value obtained from 
calculation. The complete attribute sets for a variable name are:

input or

DI MENS I ON ( bja, . . .
ALIGNED

UNALi GNED
sc I N I Tl AL( x, . . . ) VARI ABLE

where d_t is the data type, bp.... is a sequence of array-bound pairs separated 
by commas, sc is the scope and class, and x,... is a sequence of initial value 
expressions separated by commas.

The data type is one of the following sets of attributes:

REAL

COMPLEX

BI NARY

PRECISIONS)DECIMAL

PRECISION^,fl)

PICTURE"ps"
"REAL

_ COMPLEX 

NONVARYING

VARY I NG

CHARACTERC ee )

LABEL [LOCAL]

ENTRY [( d, ... )] [OPT I ONS (opt)]

FORMAT [LOCAL]

[RETURNSC d )]

POINTER

OFFSET [( a )]

Fl LE

AREA [( ee )]

STRUCTURE [LI KE r]

where £ is an unsigned decimal integer constant, a is an optionally signed 
decimal integer constant, ps is a picture, ee is an expression whose value can 
be converted to an integer value, d isa descriptor, opt is an OPTIONS type for 
external entries as described in the section "Procedure Invocation", a. i s a 
reference that yields an AREA value, and r_ i s a 1 i ke-ref e rence.
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The scope and class is one of the following sets of attributes:

STATIC

EXTERNALCONTROLLED

INTERNAL

( AUTOMAT IC

BASED [( Iq )]

( PARAMETER

DEFINED( br )

kMEMBER

[POSITI0N( 1 )]

> INTERNAL

where 1q is a locator qualifier, br is a based reference, and j_ is an expression 
whose value can be converted to an integer value.

Variable names are described in the section on "Expressions”.

CONSTANT NAMES

A constant name designates a statement address or a file-state-block 
address. The address is set by the compiler and does not change during program 
execution. The complete attribute sets for a constant name are:

INTERNAL [dIMENSION( bp )]LABEL

ENTRY

CONSTANT

INTERNAL

EXTERNAL

FORMAT INTERNAL

INTERNALS
> |0PTIONS(opt) I [RETURNS(d) 1

EXTERNAL J

where bp is a pair of array bounds, d is a descriptor for 
result, opt is an OPTIONS type for external entries, 
descr i pt i on, defined as follows:

(INPUT

STREAM < r CONSECUTIVE>
(output TprintJ [environment < )
V I I NTERACTIVE J

\ <INPUT fSEQUENTIAL

RECORD < OUTPUT >< SEQUENTIAL KEYED > ENVIRONMENT 

UPDATE J INDIRECT KEYED y

a parameter or a
and fd is the file

r CONSECUTI VE

< INDEXED > )

^REGIONAL J

Constant names are described in the section on "Expressions".
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BUI LT-IN FUNCTION NAMES

A built-in function name designates an operation that is applied to 
arguments to produce a result. Each built-in function name designates an 
operation whose action is a fixed part of the definition of PL/I. The complete 
attribute set for a built-in function name is:

INTERNAL BUILTIN

Bui 1t-i n funct i on 
’’Express i ons”, and 
on ”0pe rat i ons”.

names are described 
the individual built-in

in a general way in the section on 
functions are defined in the section

CONDITION NAMES

A condition name designates an exceptional situation 
program execution; it is used in programming a response to 
The complete attribute set for a condition name is:

that can arise during 
the given situation.

EXTERNAL CONDITION

Condition names are described i n the section on "Condition Handling”.

GENERIC NAMES

A generic name designates a set of rules for selecting a programmed entry 
name from a set of programmed entry names. The compiler follows the rules and 
replaces the generic name with one of the programmed entry names. The complete 
attribute set for a generic name is;

INTERNAL GENERIC( alt,... )

where 1 a 1t,...1 is a sequence of al terna t i ves separated by commas. Generic 
names are described in the section on "Procedure Invocation”.

9
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The Classification of Attributes

It is useful to arrange the 
classification and thus establish a 
attributes. The classification is as

attributes in a single, hierarchical 
complete terminology for the discussion of 
fol 1ows:

storage description 
storage type 

data type 
compu tat i ona1 

ar i thme t i c 
mode: REAL COMPLEX 
scale: FIXED FLOAT 
base; BINARY DECIMAL 
pr e c i s i on : PR EC I S I ON (_p, 5.)

string
string type: CHARACTERC ee) BIT(ee) PI CTUR E,,ps" 
variabi1i ty: VARYING NONVARYING 

non-compu tat i ona1 
address 

statement: LABEL ENTRY FORMAT 
data 

locator: POINTER OFFSET 
file: FILE 

area: AREA(ee) 
aggregate type 

array: DI MENS I PNC bp,...) 
structure: STRUCTURE MEMBER 

ali gnment: ALIGNED UNALIGNED 
management class 

storage class 
al location: AUTOMATIC STATIC CONTROLLED BASED(la) 
shabr i ng: BASEDClg.) DEFINEDCJbr) POSITIONCjJ PARAMETER 

scope: INTERNAL EXTERNAL 
category: VARIABLE CONSTANT 
initial: I N I T I AL ( x, . . . ) 

usage descr i pt i on 
label and format: LOCAL 
entry: ENTRY(d., ... ) RETURNSCd,...) OPTIONS(opt) 
offset: OFFSET(a) 
file cons tan t 

operation: INPUT OUTPUT UPDATE 
organ i zat i on

stream: STREAM PRINT ENV IRONMENTCINTERACTI VE) ENV IR0NMENT(CONSECUTI VE) 
record: RECORD SEQUENTIAL DIRECT KEYED ENV IRONMENTCCONSECUTIVE) 

non-valued names: ENV IRONMENTCINDEXED) ENV IRONMENTCREG I ONAL)
comp i 1 e — t i rne : LIKE r. GENERICC alt, . . . )
intrinsic names: BUI LT IN CONDITION

Definitions for the underlined identifiers, £, 5./ ee./ ancl so on, are not given 
here because they were given earlier, in the definitions of the complete 
attribute sets. Further information about a given attribute or class of 
attributes can be located through the index of this manual.
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SECTION VI I

STORAGE MANAGEMENT

Part of the cost of program execution is expended on the 
called storage. When the storage requirement can be reduced, 
program execution decreases. A programmer cannot do much to 
occupied by a given program, but he can exercise some control 
storage required for the data on which the program operates, 
data storage is called sforage management. Observe that 
concerns storage itself, and not the values contained in that

computing resource 
the cost of the 
reduce the storage 
over the amount of

The control of 
storage management 
s torage.

Each variable name in a program must have storage al 1 oca ted for its value 
at some time before it is assigned a value and may have that storage freed at 
some time after the last use of its value. Allocation and freeing are the 
fundamental operations of storage management. There are several mechanisms that 
cause these operations to occur, and the programmer chooses one mechanism for 
each variable name by giving a s to rage class attribute when he declares the 
variable name.

The requirement of a program for storage can be substantially reduced by 
the vigorous practice of storage management; the effect is achieved by using a 
gjven portion of storage for more than one purpose and thus ’’recycling" the 
storage resource. The resulting saving in storage cost is desirable; however, 
storage management has its own cost because it is, in itself, a form of data 
processing. In some cases, the saving of storage does not justify the increase 
in processing cost. Therefore, programmed storage management is usually 
reserved for cases in which a large saving in storage can be accomplished in a 
simple way.

The block structure of PL/I allows the programmer to organize^programs in a 
way that implies the desired storage management without requiring explicitly 
programmed allocation and freeing of storage. In addition, PL/I has built-in 
routines of great sophistication that facilitate storage management under 
program control. These features of PL/I allow the programmer to use very 
powerful storage management techniques with a small programming effort.

This section has three main parts. The first part gives examples and the 
fundamentals of storage allocation. The second part defines the management 
class, which consists of the usage, scope, storage class, and initial 
attributes. The final part discusses the capacity of storage and the 
exceptional conditions that apply to storage allocation.
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PRELIMINARY EXAMPLES QF STORAGE MANAGEMENT

A few concrete examples are given 
discussion of storage management. Consider, 
of storage management:

here to prepare for the detailed 
first, a program that has a minimum

P1: PRO C *
DCL (SYSIN,SYSPRINT) FILE;
DCL (A,B,C) FLOAT STATIC;
GET LIST(A);
B = A+4;
C = B**2;
PUT LIST(B,C);
END;

Because the variable names A, B, and C are declared 
allocated and paid for throughout program execution, 
a variable is not in use (that is, does not contain 
was ted.

STATIC, their storage is 
Since there are times when 

a useful value), storage is

One way of introducing storage management is to use CONTROLLED variables. 
Then statements can be inserted that allocate each variable just before its 
first use and free it just after its last use, as In the following revision of 
the given example:

P2: PROC; 0
DCL (SYSIN,SYSPRINT) FILE; 0
DCL (A,B,C) FLOAT CONTROLLED; 0 
ALLOCATE A; 1
GET LIST(A); 1
ALLOCATE B; 2
B = A+4; 2
FREE A; 1
ALLOCATE C; 2
C = B**2; 2
PUT LIST(B,C); 2
FREE B,C; 0
END;

The digit at the end of each line is not part of the program; it is added to 
show how many FLOAT variables are in storage after each statement. Instead of 
using three variables all the time, the program never uses more than two. On 
the other hand, the program has more statements, and these statements add to the 
cost of executing the program. The version just given would not be used to save 
one or two FLOAT variables; but it might be appropriate if large arrays, for 
example, were involved.
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An entirely different approach can be taken to reducing the storage 
required for the given program. The programmer can recognize that the 1 ast use 
of the variable A occurs before the f i rs t use of the variable C; this, of 
course, is a special property of this particular calculation. The programmer 
could then replace each occurrence of C by A throughout his program and omit the 
declaration of C; but this would confuse the logic of the program (since A and C 
represent different mathematical quantities). A different approach is to use a 
DEFINED variable, as follows:

P3: PROC;
DCL (SYS 1N,SYSPR1 NT) FIL
DCL (AZB) FLOAT STATIC;
DCL C FLOAT DEFINED(A);
GET LIST(A);
B = A+4;
C = B**2;
PUT 
END;

LIST(B,C);

The DEFINED attribute causes C to occupy the same storage as A, so the program 
needs storage only for two FLOAT variables. This storage management technique 
has virtually no cost in terms of execution; however, it requires an analysis of 
the program, and an error in that analysis can easily lead to costs far in 
excess of the saving in storage.

Both of these examples of programmed storage management have weaknesses: 
the first incurs a considerable processing cost for allocation and freeing and 
the second borders on trick programming. Such techniques are more appropriate 
when PL/I is used to program a computer with a small storage capacity. There 
are occasions when programmed storage management Is necessary in PL/I programs; 
but most PL/I programs rely entirely on the allocation and freeing performed by 
PL/I in response to the structure of the program.

FUNDAMENTALS OF STORAGE MANAGEMENT

The PL/I processor assigns or arranges for the assignment of one or more 
main memory storage units for each variable declared in the program. The 
storage is assigned either before execution begins or in the course of 
execution, depending on the PL/I storage class attribute specified or assumed 
for the var i ab1e.

Storage Regions

The storage assignments can be divided into three types referred to here as 
storage regions.
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A region is either i nternal or external. Each i nternal reg i on is 
associated with a particular block of a program. There are two kinds of 
internal regions:

A permanent internal region is used for variables with INTERNAL STATIC 
or INTERNAL CONTROLLED attributes. There is one such region for each 
block in a program. The region is created at some time before program 
execution begins and is not destroyed until after execution ends.

An activation internal region is used for variables with INTERNAL 
AUTOMATIC attributes. There is one such region for each activation of 
each block in a program. The region is created when the block is 
activated and is destroyed when the block is deactivated.

An external region is associated with an entire program rather than a 
particular block. There is one external region:

The o rd i na r y externa 1 region is used for variables and constants that 
have the attribute EXTERNAL. There is one such region for an ent i re 
program. The region is created at some time before program execution 
begins and is not destroyed until after execution ends.

To summarize, the regions are classified according to the following 
h i e ra rchy:

region
i nte rna1

one per block
one per activation of each block

permanent:
act i vat i on: 

external
ordinary: one per program

Region Diagrams

For purposes of discussion, it is useful to represent a region by a 
diagram. Suppose the following statements are all of the declarations in the 
third block of some given program:

BEGIN;
DCL X FIXED DEC(8) STATIC INTERNAL;
DCL 01 Y STATIC INTERNAL,

02 ALPHAC3) CHAR(4), 
02 BETA FLOAT;

END;
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The program in question has a set of regions associated with it. The diagram of 
one of these regions is:

permanent internal region, block 3

S 9 9 9 9 9 9 9 9
00610 LL1.LL11 /. / /

01834 .ALPHA(l)

01835 .ALPHA(2)
X X X X 

"L LI /, /"

01836 .ALPHA(3)
X X X X

S 1
01837 . BETA

This region is the permanent internal region for the third block of the program, 
it contains five storage units, one for the scalar variable X and four more for 
a structure variable Y. The region continues downward, as suggested by the 
absence of a bottom edge for the enclosing boundary, and has room for many more 
s tor age uni ts.

Each line of the region describes a storage unit. A line is made up of 
four components: a representation of a pointer value, a name, an access path 
composed of member names and subscripts, and a data frame.

Storage Management Operations

At any time during the execution of a program, each bit of storage in a 
region is either a 11 oca ted or free. Storage is allocated if a designation that 
can be used in program execution is associated with it; otherwise, it is free. 
Free storage is organized into a poo 1 from which requests for storage are 
satisfied.

The purpose of a storage management operation is to control the association 
between a designator (most commonly, a variable name) and its storage. The 
allocation operation for a variable name can be invoked either by the PL/I 
processor or by a program statement; but in either case, the details of the 
operation are determined by the attributes given in the declaration of the name. 
The allocation operation proceeds as follows:

1. Each extent expression (array bound, maximum string length, or area 
size) in the storage type attributes is evaluated and converted to an 
integer value. This evaluation is performed each time the allocation 
operation is performed.

2. The amount of storage required is determined from the given s to rage
type attributes and their evaluated extents.
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3. The region in which allocation must occur is determined from the given 
storage class attributes. Storage is withdrawn from the free storage 
pool of that region and is associated with the given variable name.

4. If the variable is an AREA variable, it is initialized to empty. If 
the variable has an INITIAL attribute, it is initialized; any 
expressions in the INITIAL attribute are evaluated each time the 
allocation operation is performed.

The free operat i on takes storage back from a given storage designator and
returns it to the pool of free storage.

A Large Example of Storage Management

Consider the following program, which is made up of two external 
procedures, Pl and P2:

P1: PRO C •
DCL P2 ENTRY EXTERNAL CONSTANT;
DCL A DEC(5Z2) CONTROLLED EXTERNAL;
DCL B DEC(5,2) STATIC INTERNAL;
... (Computation # 1)
CALL P2;
... ( Computat i on # 2)
FREE A;
END;

P2• PROC•
DCL X DEC(5,2) STATIC INTERNAL;
... (Computat ion # 3)

BEGIN;
DCL A DEC(5,2) CONTROLLED EXTERNAL;
DCL B DEC(5,2) STATIC INTERNAL;
DCL Y DEC(5,2) AUTOMATIC INTERNAL;
... (Computat ion #4) 
ALLOCATE A;
... (Computat ion #5)
END;

END;

The "Computations" in this program represent statements that do not introduce 
new declarations or affect the block structure of the program. Some of the 
attributes shown would normally be omitted by means of default conventions; to 
omit them here would not serve the purposes of an introductory example.
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The following discussion traces the execution of this program and describes 
each allocation operation as it occurs. Before execution begins, a single 
ordinary external region is created; for this program, it Is initially empty. 
Also before execution begins, a permanent internal region is created for each 
block and each STATIC INTERNAL variable is allocated. Immediately before 
execution of the program, the diagram for storage is:

ordinary external region

permanent internal region, block 1 (named Pl)

S 9 9 9 9 9
00505 B /////.//_/

permanent i nternal region, block 2 (named P2)___________

S 9 9 9 9 9
1U402 X /////.///

permanent internal region, block 3 (contained in P2)

S 9 9 9 9 9
00626 B / / / Z /. / / /

The first step in the execution of the program is the activation of the 
block that is the external procedure Pl. As part of this activation, an 
internal activation region is created; but because there is no automatic 
variable in the block, no storage unit is allocated in the new region.

Execution continues with Computation #1. It is assumed that the only 
allocation of the controlled variable A is the one shown in P2; therefore, the 
only storage unit available for use so far is the static variable B. After the 
computation, the procedure P2 is called.

The first step in the execution of P2 is the activation of the block; an 
internal activation region is created, but once again there is no automatic 
variable in the block, so no storage unit is allocated in the new region. 
Execution continues with Computation #3, which can use only the static variable 
X. After the computation, control flows into the BEGIN block.
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The execution of the BEGIN block begins with its activation. Again, an 
internal activation region is created; but now there is an automatic variable, 
Y, in the block and it is allocated as part of the activation. As Computation 
#4 is about to begin, the diagram for storage is:

ordinary external region__________________________________________

permanent internal region, block 1 (named RD

S 9 9 9 9 9
00505 B /-/2/ 8/0/ . /0/ 3/

permanent internal region, block 2 (named P2)

S 9 9 9 9 9
1/+A+02 X / + / 0 / 1/3/ . / 0/0/

permanent internal region, block 3 (contained in P2)

S 9 9 9 9 9
00626 B /////.///

activation internal region, block 1 (named Pl)

activation internal region, block 2 (named P2)

activation internal region, block 3 (contained in P2)

S 9 9 9 9 9
02332 Y Z.

Computation #4 can use the static variable B and the automatic variable Y. 
Observe, however, that the B that is accessible is the one in the third 
permanent internal region, not the one in the first. Thus in this example, P2 
cannot use any value that was computed in Pl.
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After Computation #4 is executed, a statement is executed that allocates a 
storage unit for the controlled variable A in the ordinary external region. 
During Computation #5, a value is stored in A, and this, it is assumed, is a 
useful result that P2 prepared for use by Pl. As execution of the BEGIN block 
and P2 is completed, their regions are discarded; then control returns to Pl. 
As Computation #2 is about to begin, the diagram for storage is:

ordinary external region

S 9 9 9 9 9
00771 a /+7i/i/i/./o7o7

permanent internal region, block 1 (named Pl)

S 9 9 9 9 9
00505 B /-72/8/0/./0/3/

permanent internal region, block 2 (named P2)

S 9 9 9 9 9
14402 X / + / 0 / 1/3 / . / 0 / 0 /

permanent internal region, block 3 (contained in P2)

S 9 9 9 9 9
00626 B / + /6/7/7/./8/9/

activation internal region, block 1 (named Pl)

Computation #2 can use the static variable B allocated for block 1; in addition, 
now that a storage unit has been allocated for A, this variable can be used in 
the computation.

After Computation #2, a FREE statement returns the storage for A to the 
free storage pool. In the storage diagram, the ordinary external region once 
again is empty. The last step in execution of the program is the deactivation 
of the block that is external procedure Pl; as part of this step, the internal 
activation region is discarded. At this time, the storage diagram looks just as 
it did before program execution (see the first diagram of this series) except 
that the stored values are filled in. When the process of which the program is 
a part ends, the remaining regions are discarded, and no storage associated with 
the program remains.
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THE MANAGEMENT CLASS

According to the earlier section on ’’Declarations", the declaration of a 
name is usually divided into two parts. The first part is the storage type/ 
which specifies the k i nd of values accommodated by the designated variable or 
constant. The second part is the management cl ass, which specifies various 
information about the handling of storage including, but not restricted to, the 
method of allocation. The storage type was defined earlier, in the section on 
"Value Storage". The management class is described here.

The management class is composed of four kinds of attributes, as follows:

The usage category attribute is VARIABLE or CONSTANT. The attribute 
describes the way in which the storage is used by the program.

The scope attribute is either INTERNAL or EXTERNAL. The attribute 
helps determine the region in which the storage is allocated and thus 
affects the accessibility of the storage.

The class attribute is AUTOMATIC, STATIC, CONTROLLED, BASED, DEFINED, 
or PARAMETER. The attribute selects the mechanism that invokes the 
allocation and freeing operations.

The initial value attribute, when present, specifies a value that is 
assigned to a variable when it is allocated.

The Form of the Management Class

Details of the form of the management class are given by the following 
di agram:

rAUTOMAT IC

STATIC

CONTROLLED

BASED [( locref )]

DEFINED [POSITIONC 1 )] 

^PARAMETER

STATIC

CONTROLLED

INTERNAL

/ VARIABLE [INITIALC vl )]

EXTERNAL

INTERNAL
CONSTANT

EXTERNAL
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In this di agram,

l.Q,Q,r.ef is a reference to a locative value or a function that yields a 
locative value.

_L is an expression whose value can be converted to an integer.

yl is a list of initial value expressions for the INITIAL attribute 
and has the syntax given later in this section under "The INITIAL 
Attr i bute".

The INITIAL attribute must not be used with either the DEFINED or 
attribute.

the PARAMETER

Abbreviations and Defaults

PL/I provides several abbreviations for the management class attributes, as 
fo11ows:

Attribute Abb rev i a t i on

INTERNAL 
EXTERNAL 
AUTOMAT IC 
CONTROLLED 
PARAMETER 
DEFINED 
INITIAL

I NT 
EXT 
AUTO 
CTL 
PARM 
DEF 
I N I T

The default attributes for the category, scope and class are as follows:

Omi tted 
Attribute

category

s cope

Defau1t

default is VARIABLE

exception: default is CONSTANT when the attribute 
ENTRY or FILE is present in the storage type and no 
attribute is present that cannot apply to a constant.

default is INTERNAL

exception: default is EXTERNAL when 
ENTRY or FILE is present in the storage

the attribute
type.

default is AUTOMATIC

exception: default is STATIC when both EXTERNAL and 
VARIABLE attributes are present.
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The following examples show the 
abbreviations to typical attribute sets:

application of these defaults and

Full Al 1 ocat i on T ype

FLOAT AUTOMATIC INTERNAL VARIABLE
FLOAT STATIC EXTERNAL VARIABLE
FlLE EXTERNAL CONSTANT

Shortest Form

FLOAT
FLOAT EXT
FILE

REMARKS ON THE DEFAULT RULES

The default rules for the management class each choose the most commonly 
used attribute as the (non-exceptiona1) default: most names declared in DECLARE 
statements are indeed variables rather than constants; an INTERNAL name is used 
wherever possible because it is more economical; and AUTOMATIC variables are the 
hallmark of programming in a b1ock-structured language like PL/I.

The exceptions for category and scope are not obvious and require further 
discussion. They reflect certain special patterns of PL/I programming and are 
best explained in terms of two specific DECLARE statements;

DCL P2 ENTRY EXTERNAL CONSTANT;
DCL SYSIN FILE EXTERNAL CONSTANT;

Declarations like these are the most common uses of the DECLARE statement for 
ENTRY or FILE names. Therefore, the default rules are adjusted so that these 
declarations can be given succinctly as:

DCL P2 ENTRY;
DCL SYSIN FILE;

The first statement is used when an external procedure (say, Pl) calls another 
external procedure at an entry specified by P2. Since P2 does not appear in a 
label prefix i n the procedure Pl, it must be declared in that procedure by a 
DECLARE statement. The second statement is used to declare the name of a file 
constant. Something like it must occur in every program that performs 
i nput/output.

The exception for class is necessary because there is no AUTOMATIC class 
for an EXTERNAL variable. The exception uses STATIC as the default because it 
is simpler and more economical than CONTROLLED.

USAGE CATEGQRIES

The usage category attributes indicate the ways in which names are used. 
For the VARIABLE category, storage management is explicit and is largely under 
the control of the programmer. For the CONSTANT category, the programmer can 
specify the scope attribute but must leave the details of allocation to the PL/I 
proces so r.
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Variables

A ,va r i able s.tor age uun. i.t s equence, or variable for short, is used to store a 
value that can change repeatedly throughout its existence and can be set 
directly by a program statement. A variable can be allocated and freed by the 
PL/Iprocessor or explicitly by program statements; but in every case, the 
details of the operation are determined by the scope and class attributes that 
are given in the declaration of the variable name.

A variable can be declared with any 
A variable can accommodate a scalar value, 
unit, or it can accommodate an aggregate 
of storage uni ts.

storage type allowed in the language, 
in which case it is a single storage 
value, in which case it is a sequence

Cons tants

A .cons tan t s to r age un i t sequence, or cons tan t for short, is used to store a 
value that is set by the PL/I processor when storage is allocated and does not 
change thereafter. The only valid reference to a constant in a program is one 
that retrieves its value.

Computational constants are designated by literal constant references, 
while no n - com pu t a t i o n a 1 constants are designated by names. These program 
constructs are described later, in the section on "Expressions".

The design of PL/I does not allow the use of constants that can use a large 
quantity of storage. The value of a string constant cannot be longer than 64 
words. No area constant is allowed. The only aggregate constant allowed is a 
one-dimensional array of label constants, which if used properly, should not be 
large. Thus the storage management of constants is of no interest to the 
programmer.

SCOPES

The scope attribute determines whether or not two declarations of the same 
name have the same meaning.

In te rna1 Names

Each time a given name is declared in a different block with the INTERNAL 
attribute it has a different meaning. Each declaration can associate a 
different set of attributes with the name. When storage is allocated for the 
name, it will be different from that for other declarations of the name because 
it will be allocated in a region uniquely associated with the block in which the 
declaration is established.
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External Names

Each time a given name is declared in a different block (but in the same 
program) with the EXTERNAL attribute it has the samemeaning. Each declaration 
must associate exactly the same set of attributes with the name (after defaults 
and abbreviations have been filled in). Storage is allocated for the name only 
once, and is shared by all EXTERNAL declarations of the name because it is 
allocated in a region associated with the program as a whole.

Guidelines for the Scope

The INTERNAL attribute should be used except where there is a need to share 
a variable or constant between two external procedures. Rather than passing the 
variable or constant on each call from one external procedure to another, it can 
be declared external to reduce the time and space required for the call.

When external names are used, special care must be taken. If the external 
procedures of a large program are written at separate times or by different 
people, the use of external names must be coordinated. Otherwise, conflicting 
uses of the same external name will be discovered only when the complete program 
is executed, if at all.

The Correspondence Between Names and Storage

It is a principle of PL/I that each allocated portion of storage is 
designated by a name (that is, a declared identifier) in the. program and, 
conversely, each name in the program designates an allocated portion of storage. 
Thus there is a correspondence between names and storage. This is a useful 
principle; but it does have some exceptions.

An allocated portion of storage is not designated by a name in the 
following cases:

Temporary s torage uni ts are not designated by names (or any other 
program constructs). This is because temporaries are accessible to 
the PL/I processor but not to program statements.

Computational constants are designated by literal constant references, 
not names. This is because the spelling of a literal constant is used 
to indicate the value of the constant. (For example, the literal 
constant 100 indicates that its value is one hundred.)

ExPlicj tlv al located based variables are designated by locative 
values, not names. More is said of this later in this section.
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A name does not designate an allocated portion of storage in the following 
cases:

A gene r i c fu notion name is used as a kind of macro name, and is 
replaced by an entry constant name (which does designate storage) 
before program execution begins.

A buj. 11 - i n fun ct i on name has an intrinsic meaning, and, in that 
respect, resembles an operator such as ’+1 or ’ = for example, when 
ABS is declared BUILTIN, it refers to the absolute value operation 
that is part of the definition of PL/I.

A con.d i t i on name is related to an entry variable name; but the storage 
it uses, is not. directly accessible to program statements and is 
managed in a specialized way.

A constant name is evaluated during program execution.

A con t rolled v a r i a b1e name does not designate storage unless it is 
a 11 ocated.

Every name in a PL/1 program has a scope. The scopes for the exceptional 
names just mentioned are INTERNAL for generic function references and built-in 
function names and EXTERNAL for condition names. These exceptional names are 
discussed in later sections.

STORAGE CLASSES

The storage class attribute determines storage management. By writing a 
single attribute for a variable name, the programmer selects from six very 
different mechanisms for storage management. Some mechanisms are easy to learn 
and use (AUTOMATIC, STATIC, and CONTROLLED). One is designed for the special 
purpose of transmitting arguments to procedures (PARAMETER). Those remaining 
(BASED and DEFINED) are for advanced programming applications and can be ignored 
in an initial study of PL/I.

Automat ic Variables

The attribute AUTOMATIC designates a storage management mechanism that is 
driven by the block structure of the program rather than program statements. A 
variable whose name is declared AUTOMATIC is allocated as part of the activation 
of the block in which it is declared and is freed as part of the deactivation of 
that block. Thus it is available for use during a particular activation of the 
given block.

Fhe activation of a block occurs as control enters a block (either by 
invocation of a procedure block or sequential flow into a BEGIN block); it is 
performed.before the first executable statement of the block is executed. The 
deacti va t i on occurs as control leaves the block (by execution of an END 
statement, a RETURN statement, or a GOTO statement); it is performed before 
execution of a statement that is not contained in the block.

An. automatic variable always has INTERNAL scope. It is allocated in the 
activation internal region that is associated with the given activation of the 
given block.
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VARIABLE EXPRESSIONS IN ATTRIBUTES FOR AUTOMATIC VARIABLES

The attributes of an automatic variable can contain variab1e expressions, 
these can be extent expressions (array bounds, maximum string length, or area 
size) or initial value expressions. When an automatic variable is allocated as 
part of block activation, these variable expressions must be evaluated.. They 
must depend only on variables that are set before the given block activation 
begi ns.

This rule appears to be obvious, but the following program shows 
does introduce a restriction on the use of automatic variables.

that i t

P1 • PROC *
DCL N FIXED INlTIAL(5);
DCL A(N) FLOAT;
• • •
END;

(Since no storage class is given for N and A, both are AUTOMATIC.) 
is quite clear what the programmer wants to have happen, this program 
because the allocation of A depends on a variable, N, that was not 
block activation began. In contrast, consider the program:

Al though i t 
i s i nva1 i d 

set before

P2 * PROC *
DCL N FIXED STATIC INITIALS);
DCL A(N) FLOAT;

END;

This program is valid because a STATIC variable is allocated and set before 
block activation begins.

THE SAVING OF VARIABLE EXTENTS FOR AUTOMATIC VARIABLES

The storage type used for every reference to a variable must be pons j s tPn t, 
that is, it must be identical to the storage type used for the allocation of 
that variable. This is a fundamental rule of PL/I; it asserts that storage 
cannot be given more than one interpretation. There are exceptions to this 
rule, but they apply only when the storage class is BASED or DEFINED, and are 
relevant only in advanced applications of the language.

When BASED or DEFINED variables are not used, the design of PL/I makes it 
impossible for the programmer to break the rule of storage type consistency; 
specifically, when storage is allocated for a variable, every part of the 
storage type that can change during program execution is saved.. Each reference 
to the variable uses the saved information and is therefore consistent with the 
allocation of the variable.
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The following program 
storage types:

fragment s hows the effect of this treatment of

Pl: PROC;
DCL N FIXED;
N = 4;

BEGIN;
DCL S CHARCN+2);

N* = 100;
S = "ABCDEF";

END;

END;

(Since no storage class is given for N and S, both of the designated variables 
are AUTOMATIC.) At the time S is allocated, the storage type given by the 
DECLARE statement is CHAR(6); this storage type is used for the allocation and 
is saved. Subsequent reference to S, including both the assignment to S and the 
automatic freeing of S at the deactivation of the BEGIN block, use the saved 
storage type. Thus the fact that the storage type given by the DECLARE 
statement changes to become CHAR(102) has no effect on the program and, 
specifically, does not cause a violation of the storage type consistency rule.

The extents for an AUTOMATIC variable are saved in temporaries that are 
allocated and freed in the same region and at the same time as the variable. 
Because temporary storage is not accessible to program statements, the saved 
extents cannot be inadvertently changed.

Static Variables

The attribute STATIC designates a storage management mechanism that makes 
the allocated storage available throughout program execution. A variable whose 
name is declared STATIC is allocated at some time before the first reference to 
the variable is processed and is freed at some time after the last reference is 
processed.

An ord i nary static variable can have INTERNAL or EXTERNAL scope and. is 
allocated in a pe rmanen t i n te r na 1 region or in the o r d i nary external r eg i ,on, 
accord i ngly.

VARIABLE EXPRESSIONS IN ATTRIBUTES FOR STATIC VARIABLES

Every expression in an attribute in the declaration of a STATIC variable 
must be a constant expression. In particular, the extents (array bounds, 
maximum string length, or area size) and the initialization expressions must be 
constants. Since the extents are constants, it is not necessary to save them.
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Controlled Variables

The attribute CONTROLLED designates a storage management mechanism that is 
driven by program statements and is thus under program control. A variable 
whose name is declared CONTROLLED is allocated by the execution of an ALLOCATE 
statement and freed by the execution of a FREE statement. Thus the variable is 
available for whatever portion of execution of the program the programmer 
requ ires.

A controlled variable can have 
in a permanent i nternal region or i n

INTERNAL or EXTERNAL scope and is allocated 
the ord i nary external reg ion, accordingly.

THE ALLOCATE AND FREE STATEMENTS FOR CONTROLLED VARIABLES

A controlled variable whose name is i d is allocated by the statement

ALLOCATE j_d;

and is freed by the statement

FREE id;

The keyword ALLOCATE can be abbreviated as ALLOC. More than one identifier can 
be mentioned in an ALLOCATE or FREE statement; in that case, each identifier is 
separated from the next by a comma.

STACKING CONTROLLED VARIABLES

A simple use of a controlled variable name is to allocate storage for a 
variable, reference the storage as often as necessary, and then free the 
storage. A more general use of a controlled variable name is to allocate 
storage for a variable more than once before freeing its storage. When used in 
this way, a controlled variable name designates a stack of variables, and has 
the following properties:

• Each time the name is used in an ALLOCATE statement, a new variable is 
allocated and earlier allocations remain undisturbed.

€ Each time the name is used in a FREE statement, the most recently 
allocated variable designated by the name is freed and the less recent 
allocations are undisturbed.

• Each time the name is used as a reference, the most recently allocated 
variable designated by the name is accessed for the setting or 
retrieving of a value.

A program that uses a name in a reference or a freeing when there is no variable 
allocated for that name is invalid. This can occur when no allocation has 
occurred or when the number of freeings already equals the number of 
al locations.
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As an example of the use of a controlled variable name to designate a stack 
of variables, consider the following program:

Pl: PROC;
DCL X FLOAT CONTROLLED;
. . . (Computation #1)
ALLOCATE X;
X = 10;
...(Computat ion #2)
ALLOCATE X;
X = 20;
...(Computat ion # 3)
FREE X;
. . .(Computat ion # 4)
FREE X;
. ..(Computat ion # 5) 
END;

The "Computations” contain only references to X that retrieve its values; all 
allocations, freeings, and settings are shown explicitly. A reference to X in 
Computation #1 would be invalid because no variable has been allocated for X. 
References in Computations #2 and #3 yield 10 and 20. A reference in
Computation #4 yields 10 because the variable first allocated for X becomes
available after the first FREE statement; this is the point of the example. A
reference to X in Computation #5 is invalid because all variables associated
with X have been freed.

VARIABLE EXPRESSIONS IN ATTRIBUTES FOR CONTROLLED VARIABLES

The execution of an ALLOCATE statement causes the extent expressions (array 
bounds, maximum string length, or area size) and the initial value expressions 
in the declaration of the allocated variable name to be evaluated. The 
expressions can depend on any variable that has a value immediately before 
execution of the ALLOCATE statement.

Sometimes a variable expression in an attribute has access to different 
variables than the ALLOCATE statement that causes evaluation of the expression. 
Consider the program fragment:

Pl: PROC;
DCL N FIXED;
DCL A(N+2) FLOAT CONTROLLED;
N = 1;

BEGIN;
DCL N FlXED;
N = 10;

ALLOCATE A;

END;

END;

The ALLOCATE statement uses the storage type DIMC3) FLOAT for the allocation of 
A, not DIMC12) FLOAT. The example emphasizes the rule, true throughout PL/I, 
that the resolution of a name depends on where it occurs in the program, not 
what it is used for.
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THE SAVING OF VARIABLE EXTENTS FOR CONTROLLED VARIABLES

The values of any variable extents in the storage type of a CONTROLLED 
variable name are saved, as with AUTOMATIC variable names. The value saved and 
used for subsequent references is that computed when the variable is allocated; 
it is saved in a temporary that is associated with the variable. When more than 
one variable is allocated for a given controlled variable name, the saved 
extents may not be the same; they are evaluated for each allocation of the 
variable.

Parameter Variables

The attribute PARAMETER designates a storage management scheme that is an 
integral part of the invocation of a procedure, by either a CALL statement or a 
function reference. A variable name declared PARAMETER never has storage 
allocated for it; instead, it is associated with storage that has previously 
been allocated and that contains an argument for the procedure invocation. The 
parameter name is associated with the argument variable as part of the 
activation of the procedure block, and the association is broken as part of the 
deactivation of the block.

A parameter variable name always has INTERNAL scope. Because a parameter 
variable name is associated with a variable allocated for some other name, the 
storage it references can be in any region.

VARIABLE EXPRESSIONS IN ATTRIBUTES FOR PARAMETER VARIABLES

Each extent expression (array bound, maximum string length, or area size) 
must be either a constant expression or a single asterisk, ’*’. When an extent 
expression is an asterisk, the corresponding extent of the associated argument 
variable is used. Full details of this mechanism, which is especially provided 
for parameters, is given later in the section on ’’Procedure Invocation”.

A parameter variable never has 
cannot have an initial attribute 
that attribute does not arise.

storage allocated for it; therefore, 
and the treatment of variable expressions

i t
i n

Based Variables

The attribute BASED designates a storage management mechanism that can be 
driven by program statements. A variable whose name is declared BASED can be 
allocated by an ALLOCATE statement and freed by a, FREE statement. Such a 
variable is called an explicitly al located bas ed v a r i able.
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A based variable always has INTERNAL scope. An explicitly allocated based 
variable is allocated either in a permanent i nterrjal region or in an area 
variable; the choice depends on the ALLOCATE statement.

Whenever a variable is al located for a based variable name, the storage 
type is supplied by the name but the name is not associated with the variable as 
its designator. Instead, the allocation operation produces a locative value 
that is assigned to a POINTER or OFFSET variable.

Whenever a variable is referenced with a based variable name, the storage 
type is supplied by the based variable name, but the name does not locate the 
variable in storage. Instead, the variable is designated by a locative value 
that is obtained by a POINTER or OFFSET variable that is mentioned with the 
based variable in the reference.

A simple example of the use of a based variable and an 
i s :

Pl: PROC;
DCL A DEC(5,2) BASED INITIAL(O);
DCL P POINTER;
DCL SYSPRINT FlLE;
• • •
ALLOCATE A SET(P);

P->A = 5;
• • •
PUT LIST (P->A);

FREE P->A;
END;

In this example, the based variable name A is used in 
explicitly allocated based variable; but it is the value of 
designates that variable, not the based variable name A. 
the pointer variable name P is used with it.

associated pointer

the all oca t ion of an 
the pointer P that 
Wherever A is used,

As the PUT statement is about to be executed, the diagram for s tor age i s:

ordinary external region

permanent internal

41137

region, block 1 (named Pl)

S 9 9 9 9 9
/+/0/0/5/./0/0/

activation internal region, block 1 (named Pl)

pointer
00332 P / 41137 /

Observe that the DEC(5,2) variable is not given the name A; instead, it must be 
designated by its locative value, represented as 41137.

The purpose of the based variable is not as self-evident as that of the 
other classes of variable. The discussion that follows gives the rules that 
govern the use of based variable, and illustrates those rules.
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THE REFERENCE IN THE BASED ATTRIBUTE

The BASED attribute can be followed by a parenthesized reference to a 
locative value. This reference is adopted as the default locative reference for 
the variable name to which the attribute applies. If a locator qualifier is 
omitted from a reference to the based variable, the parenthesized reference is 
used as an assumed locative qualifier. Similarly, if the SET option is omitted 
from an ALLOCATE statement for the based variable, the parenthesized reference 
is used as an assumed SET option.

The example of a based variable given earlier can be shortened by the use 
of a parenthesized reference with the BASED attribute. The revised program is 
as foilows:

P2: PROC•
DCL A DEC(5,2) BASED(P) INITIAL(O);
DCL P POINTER;
DCL SYSPRINT FlLE;

ALLOCATE A;
• • • 
A = 5;

PUT LIST(A);
• • • 
FREE A;
END;

Thus all mentions of the pointer P outside of the declarations are eliminated, 
and the usage for A closely resembles that of a controlled variable.

THE ALLOCATE AND FREE STATEMENTS FOR BASED VARIABLES

A based variable whose name is i d is allocated by a statement of the form

ALLOCATE id [SET( locref )] [lN( arearef )] ;

and is freed by a statement of the form

FREE i d [ I N( arearef )] ;

The square brackets indicate that the options can be omitted. The 1ocref in the 
SET option must be a reference to which a locative value can be assigned, namely 
a POINTER or OFFSET variable. The arearef in the IN option must be a reference 
that designates an AREA variable.

If i d has been declared BASEDC ref), then the SET option can be omitted and 
the PL/I processor assumes SETC ref). If the ref supplied by the BASED attribute 
is not a reference to which a locative value can be assigned, however, the 
assumed option will be invalid. When the ALLOCATE statement is executed, the 
locative value that designates the allocated storage is assigned to the variable 
supplied by the SET option or the BASED attribute.

If a programmer wants to allocate i d in the internal permanent region, then 
the IN option is omitted. If a programmer wants to allocate i d in some AREA 
variable (which can be in any region), then the area is specified by means of 
the IN option. When i d is freed, the IN option must be the same that was used 
for i ts allocat ion.
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VARIABLE EXPRESSIONS IN ATTRIBUTES

The execution of.an ALLOCATE statement causes the extent expressions (array 
bounds, maximum string length, or area size) and the initial value expressions 
in the declaration of the allocated variable name to be evaluated. The 
expressions can depend on any variable that has a value immediately before 
execution of the ALLOCATE statement. In this respect, a based variable name 
behaves exactly as a controlled variable name.

THE SAVING OF VARIABLE EXTENTS

The values of variable extents in the storage type of a based variable name 
are. no_t saved automatically by the PL/I processor; in this respect, based 
variables differ from all others. In some cases, the extents in the storage 
type are evaluated for each reference; and in these cases any change in an 
extent results in violation of the storage type consistency rule and an invalid 
program.

in
The following example is similar to a valid program fragment given earlier, 

the description of automatic variables:

Pl: PROC;
DCL N FIXED;
DCL S CHARCN+2) BASED(BETA);
DCL BETA POINTER;
• • •
N = A;
ALLOCATE S;
• • •
N = 100;
S = "ABCDEF";

FREE S;
END;

This program is not va1 id. The reference to S in the assignment statement 
causes the extent expression ’N+2’ to be evaluated (since there is no stored 
extent available). Thus, although the variable was allocated with storage type 
CHARC6), it. is referenced with storage type CHAR(102). The string ABCDEF is 
filled out with blanks to make a string of 102 characters, and that string is 
assigned to S, where storage for only six characters has been provided. The 
result is the overwriting of variables allocated immediately after S. A similar 
error occurs when the storage for S is freed. These errors are not detected by 
the PL/I processor, and their effect may be an obscure malfunction of the 
program.
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The invalid program just given can be repaired by keeping the expression 
for the maximum length of S unchanged throughout the existence of the variable 
for S. Toward this endz a new variable, N2 can be declared and used in the 
extent expression while the value of N is allowed to change as before. The 
revised program is:

P2: PROC;
DCL N FIXED;
DCL N2 FIXED;
DCL S CHARCN2+2) BASED(BETA);
DCL BETA POINTER; 
• • • 
N = 4;
N2 = N; 
ALLOCATE S;

N = 100;
S = "ABCDEF”;

FREE S;
END;

This program is valid. It will evaluate the extent of the CHAR attribute three 
times (for the allocation, the reference, and the freeing), but it will obtain 
the value 6 each time.

THE REFER OPTION

PL/I has a special feature, the REFER option, that makes possible the 
systematic handling of variable extents of based variables. Using the REFER 
option, the program fragment considered earlier can be written as follows:

P3: PROC;

ALLOCATE SPAIR;

DCL N FIXED;
DCL 01 SPAIR BASED(BETA),

02 N2 F1XED,
02 S CHAR(N+2 REFERCN2))

DCL BETA POINTER;
• • •
N = A;

N* = 100;
S = "ABCDEF”;

FREE SPAIR;
END;

This revision of the original, invalid program has changed only the handling of 
S, replacing it with the structure SPAIR; however, the change eliminates the 
storage type inconsistency. The extent expression N+2 REFERCN2) is interpreted 
as foilows:

When SPAIR is allocated, calculate the extent for SPAIR.S (also known 
as S) from the expression N+2; use that value for the allocation of 
storage; and then save the value in SPAIR.N2 (also known as N2). 
Furthermore, whenever a reference to S is made, refer to N2, not the 
expression N+21, for the value of the extent.

Evidently, the REFER option has an important effect on the interpretation of the 
program.
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The REFER option is used to save the variable extents of a based variable 
name in much the same way that the PL/I processor automatically saves variable 
extents for all other storage classes. Any number of extents in a variable can 
each be handled by a REFER option. For example, a structure that would 
otherwise be declared as

DCL 01 ALPHA(-2:R-2) BASED,
02 BETA BIT(J(M-l)) VARYING,
02 GAMMA(S1,S2) FLOAT;

can be declared as

DCL 01 X BASED,
02 (KI,K2,K3,KU) FIXED,
02 ALPHA(-2:R-2 REFER(Kl)),

03 BETA BIT(J(M-1) REFERCK2)) VARYING,
03 GAMMACSl REFER(K3),S2 REFER(K^)) FLOAT;

Such a variable is called a seif-def i n i ng s t ructu re because it carries its own 
extents within itself.

The parenthesized reference that follows the REFER keyword must designate a 
scalar variable that is declared earlier in the same structure that contains the 
REFER option. The referenced variable must, of course, be of suitable data type 
to have the extent value assigned to it.

EQUIVALENCED BASED VARIABLES

All of the based variables thus far discussed have been expli c i 11y 
al located based var i ab1es; that is, they are variables that were allocated using 
a based variable name to supply the storage type; and the locative value that 
designates the variable was produced as part of the allocation operation.

A second kind of based variable is the equ i va1enced bas ed variable. Such a 
variable does not have storage of its own, but rather is superimposed on or 
equ i va 1 enced jto a variable, the base variable/ that was previously allocated. 
The base variable can have any storage type; it can even be an explicitly 
allocated based variable. However, the base variable must be connected; that 
is, if it is an aggregate, then its components must occupy an uninterrupted 
sequence of storage units.

The locative value that designates the base variable 
ADDR built-in function; for example, the assignment statement

is obtained by the

P = ADDR(A);

ob ta i ns 
as s i gns

the locative value that designates the variable designated 
that locative value to the pointer variable designated by P.

by A and

There are three kinds of equivalenced based variables: simp]e based 
variables, s t r i ng overlay based variables, and partial based variables; each of 
these is discussed in the following paragraphs.
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Simple Based Variables

The storage type of a simple based variable must 
storage type of the base variable.

agree exactly with the

As an example of the use of a simple based variable, consider the following 
program:

Pl: PROC;
DCL X DEC(5,2);
DCL Y DEC(5,2) BASED;
DCL P POINTER;
DCL (SYSIN,SYSPRINT) FILE;
P = ADDR(X);
GET LIST(X);
PUT LIST(2*P->Y);
END;

This program inputs a number, doubles it, 
invalid if the storage type of Y differed

and prints it. The program would be 
from that of X.

Immediately after the GET statement has input the value -23 from the input 
stream, the diagram for storage is:

As is always the case with a based variable, there is no .mention of Y in 
storage; it is used only to supply a storage type for use in conjunction with 
P.

As a second example of a simple based va r i able, cons i der the following
statements:

DCL 01 A(5), 
02 X FIXED, 
02 Y CHARC6);

DCL 01 B BASED, 
02 R FIXED, 
02 S CHAR(6);

DCL P2 POINTER;

Suppose that the following assignment statement is executed:

P2 = ADDR(A(3));
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Then the following references are valid:

P2->B (means A(3))

P2->B.R (means A(3).X)

P2->B.S (means A(3).Y)

Thus the POINTER variable supplies the address of the leftmost name, B in this 
example, in a reference to a based variable. Further examples are given later, 
in the section on "Expressions”, under "Locator-Qua1ified Variable References".

String Overlay Based Variables

A string is not a truly indivisible value; it is made up of characters or 
bits. In some applications, it is useful to impose more than one inter pretation 
on the storage for a sequence of characters or bits. Str i ng over 1 ay based 
variables are used for this purpose.

A string overlay based variable and its base variable must be either 
NONVARYING UNALIGNED scalars or aggregates of NONVARYING UNALIGNED scalars. For 
a given string overlay, all variables must be CHARACTER or all variables must be 
BIT. The aggregate type of the base variable need not match, and a pictured 
character-string variable can be matched with an ordinary character-string 
variable. This relaxation of the rules for aggregate type and pictured data 
type permits different interpretations of a given string variable.

As an 
s ta temen ts:

example of a string overlay based variable, consider the following

DCL WORD(1024) BIT(36);
DCL 01 FL0AT_NUM BASED, 

02 SIGN BIT(l) UNAL, 
02 CHARACTERISTIC BIT(8) UNAL, 
02 MANTISSA BlT(27) UNAL;

DCL PNUM POINTER;

Suppose the following assignment statement is executed:

PNUM = ADDR(WORD(23));

then the following references are valid:

PNUM->FLOAT—NUM (means WORD(23))

PNUM->FLOAT—NUM.SI GN (means the first bit of WORD(23D)

PNUM->FLOAT—NUM.CHARACTER I ST I C (means the next 8 bits of WORD(23))

PNUM->FLOAT—NUM.MANTISSA (means the last 27 bits of WORD(23))

Thus the based structure variable can be used to designate various substrings of 
the string variable designated by WORD(23).
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The requirement that strings be NONVARYING UNALIGNED is the way of saying, 
in PL/I, that several strings must be stored together, without any unused 
storage or any word or bit counts between them. Because the example satisfies 
this restriction, a single bit string can be interpreted as a structure made up 
of three bit strings.

Partial Based Variables

Sometimes it is necessary to examine a portion of a 
without knowing all the details of the storage type of the 
based variable is used for this purpose.

s t ructure 
variable.

variable
A partial

A partial based variable and its base variable must be structure variables 
whose storage types agree through the first n. declaration clauses. For example, 
consider the following statements:

va r i ab1e name.

DCL

DCL

01

01

ALPHA,
02 A FIXED,
02 B,

03 Bl FLOAT,
03 B2 CHAR(10), 

02 C CHAR(2000) VAR; 
BETA BASED, 
02 Q FIXED, 
02 R,

03 R1 FLOAT,
03 R2 CHAR(12), 

02 S CHAR(2000) VAR;

Observe 
and BETA

that 
are

the- first four declaration clauses 
the same; that is, both storage types

of the storage 
begi n:

types of ALPHA

01, 02 FIXED, 02, 03 FLOAT

Thus BETA can be used as a partial based variable name wi th ALPHA as the base

There 
fo11ows:

are two res tr i ct ions on references to a partial based variable, as

When the storage types of the based variable name and the base 
variable name are compared from the beginning (the level-one 
declaration clause) toward the end (the last declaration clause), the 
storage types must agree through the declaration of all components 
that are designated by the given reference.

Furthermore, if one of the components designated by the reference is a 
component of a level-two structure, then the declarations of the based 
variable and the base variable must agree for a 11 components of that 
1evel-two structure.

The first restriction is a reasonable one; it requires that the portions of the 
structures that are used must be in agreement. The second restriction is not 
reasonable; it is a flaw in the design of PL/I.
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Consider again the declarations of ALPHA and BETA given earlier in this 
discussion. Suppose the following assignment statement has been executed:

P = ADDR(ALPHA);

where P is declared POINTER. In this situation, the only valid use of BETA is 
the following reference:

P->BETA.Q (means ALPHA.A)

Thus it is possible to obtain the value of ALPHA.A without matching the whole 
storage type of ALPHA.

Since the storage types of ALPHA and BETA agree through ALPHA.B.Bl, it 
might seem valid to use BETA in the following reference:

P->BETA.R.R1

However, this reference violates the second restriction on partial based 
references. Specifically, the reference designates a component ALPHA.B.Bl of a 
level-two structure ALPHA.B that has a component ALPHA.B.B2 for which the 
storage type of ALPHA and BETA do not agree.

One use for a partial based variable reference arises in handling input 
from a file in which records have several different structures. If the file is 
designed so that every record begins with an integer value that indicates the 
structure of the remainder of the record, then this integer can be obtained by 
means of a partial based variable reference. An example is given later, in the 
section on "Record Input/Output" under "An Example of Based Input".

Def i ned Variables

The attribute DEFINED designates a storage management mechanism that 
provides a new name for an existing variable rather than allocating a new 
variable. The association between the defined variable name and the designated 
variable is formed at the time of block activation and broken at block 
deact i vat i on.

A defined variable name always has INTERNAL scope, 
is associated with a variable allocated for some other 
references can be in any region.

Because a defined name
name, the storage it

VARIABLE EXPRESSIONS IN ATTRIBUTES FOR DEFINED VARIABLES

The extent expressions (array bounds, maximum string length, or area size) 
are evaluated as part of the activation of the block in which the defined 
variable is declared. Therefore, the expressions can depend only on variables 
that are defined before block activation begins.

A defined variable never 
have an initial attribute and 
attribute does not arise.

has storage allocated for it; therefore, 
the treatment of variable expressions

i t cannot 
in that
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THE SAVING OF VARIABLE EXTENTS FOR DEFINED VARIABLES

The values of the extent expression are saved in temporaries at the time 
they are computed. The storage for these temporaries is allocated in the 
activation region associated with the block activation, and the storage is freed 
upon block activation. Because the extents are saved, it is not possible to 
violate the storage consistency rule in the use of a defined variable.

THE USES OF DEFINED VARIABLES

The DEFINED attribute consists of the keyword DEFINED followed by a 
parenthesized reference. The variable designated by the reference is called the 
base variable because it is the base on which the defined variable is 
superimposed. There are three ways to use a defined variable: simple def i n i ng, 
s tr i ng over 1 ay def i n i ng and i sub def i n i ng.

Simple Def i n i ng

For most cases of simple def i n i ng, the 
storage type as the defined variable. Some

base variable must have the same 
examples follow; consider first:

DCL S CHAR(20) VARYING STATIC;
DCL T CHARC20) VARYING DEFINED(S);

In this case, any reference to T will 
Consider next:

be equivalent to a reference to S.

DCL 01 A,
02 B(N),

03 C FLOAT,
03 D FLOAT,

02 E CHAR(6);
DCL X FLOAT DEF INED(A.B(I-2).D);
DCL Y(N) FLOAT DEF INED(A.B(*).D);
DCL 01 Z DEFINED(A.B(J)),

02 Z1 FLOAT,
02 Z2 FLOAT;

In this case, X is associated with the scalar designated by A.B(I-2).D; the 
variable I is resolved where it appears (in the declaration) but is evaluated 
each time a reference to X is processed. The defined variable Y is associated 
with a cross-section of the array A.B, namely that formed of the second member 
of each element of the array. The defined variable Z is associated with a 
particular element of A.B; once again, J is evaluated for each reference.
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String Overlay Defining

String overlay defining allows a string variable to be defined onto the 
storage of another string variable so that the defined variable occupies all or 
part of the same storage allocated for the base variable. String overlay 
defining can be performed for either bit strings or character-strings, but the 
two types cannot be mixed in any given use of string overlay defining.

The defined variable and the base variable must be NONVARYING UNALIGNED 
string scalars or aggregates of NONVARYING UNALIGNED string scalars. The 
aggregate type of the defined variable and the base variable need not matchz and 
a pictured character-string variable can be treated as an ordinary NONVARYING 
cha r act er-s t r i ng variable; these are the ’’loopholes” that make string overlay 
def i n i ng us efu1 .

Examples 
statements :

of string overlay defining are given in the following DECLARE

DCL A(5) CHARC2) UNAL;
DCL B CHARC8) DEF(A);
DCL 01 C DEF(A),

02 X CHAR(5) UNAL,
02 Y CHARC5) UNAL;

The first statement declares A as the name of an array variable that has five 
elements, each composed of two characters. The second statement declares B as 
another name for the variable designated by A; but it views the variable not as 
an array but as a sequence of ten character positions, the first eight of which 
are interpreted as a scalar character-string variable. The third statement 
declares C as yet another name for the variable designated by A; but it 
interprets the character positions of A as a structure composed of two 
five-character members.

The 
pos i t ion 
example,

POSITION attribute can be used to start 
other than the first character position of 
consider:

the DEFINED variable at some 
the based variable. For

DCL D CHARC5) DEF(A) POSC6);

This statement , declares 
variable designated by A.

a name for the last five character positions of the

I sub Def i n i ng

For isub defining, the special lexemes 1SUB, 2SUB, 3SUB, and so on, are 
used to make special use of the subscript values of the defined variable. 
Consider the declarations:

DCL A(3,3) FLOAT;
DCL Q(3) FLOAT DEFINED A(ISUB,ISUB);
DCL R(3,3) FLOAT DEFINED A(4-ISUB,2SUB);
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In this case, Q is made up of the three elements of A that lie on the diagonal, 
and R is made up of the rows of A in reverse order. The two arrays map onto A 
as foilows:

Q( 1) -- A(l,l)
Q( 2) -- A(2,2)
Q(3) -- A(3,3)

R(l,l) -- A(3,l)
R(2,l) -- A(2,l)
R(3,l) -- A(l,l)

R(l,2) -- A(3,2) 
R(2,2) — A(2,2) 
R(3,2) -- Add)

Rd,3) -- A(3,3) 
R(2,3) -- A(2,3) 
R(3,3) -- Ad,3)

Guidelines for the Storage Class

Suggested uses for each of the six storage classes are given here. The 
order in which the storage classes are discussed is not an indication of their 
frequency of use.

AUTOMATIC VARIABLES

An automat i c variable should be used wherever possible; the fact that 
AUTOMATIC is the default storage class attribute makes this recommendation easy 
to follow. An automatic variable is clearly associated with a block and is 
allocated only while that block is activated; therefore, its intended role in a 
program is more clear than that of any other class of variable. When a block is 
considered as a building block of a larger program, the automatic variable names 
declared in the block can be entirely ignored; their existence cannot be 
perceived from outside the block.

A reference to an automatic variable that is immediately contained in the 
block in which the variable name is declared is a 1 oca 1 reference. Local 
references are considerably less costly to process than other references. In 
order to maximize the number of local references, an automatic variable should 
always be declared in the smallest existing block that contains all references 
to it; if this rule is followed, at least some of the references to the variable 
are local references.

If the programmer allocated a particular variable (controlled or based) at 
the beginning of execution of each block and freed it at the end of the block, 
the storage management operations would incur a considerable expense. Although 
an automatic variable is allocated and freed for each execution of its block, an 
extra cost is not incurred; on the contrary, the special techniques used in the 
implementation of PL/I (the use of a stack) make the cost of storage management 
of an automatic variable negligible.
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The use of variable expressions in the extents of a storage type of an 
automatic variable increases the cost of the variable. Of course the extent 
expressions must be evaluated and saved when the variable is allocated; but this 
cost is obvious and is examined like any other computation cost. A more 
important cost arises in certain cases in references to the variable. Consider 
the declaration:

DCL 01 A,
02 B(N) FLOAT,
02 C FIXED;

For each reference to C, the PL/I processor must not only find the location at 
which the structure A begins, but also must determine the size of B so it can be 
skipped over to reach C. The size of B is not known at compile time, and 
therefore relatively inefficient code for the reference must be compiled. A 
more efficient declaration of the same structure is:

DCL 01 A,
02 C FIXED,
02 B(N) FLOAT;

When other considerations do not forbid, components with variable extents should 
be placed as late in a structure as possible.

Declaring an initial value for an automatic variable specifies that the 
initialization be performed each time storage is assigned the variable, that is, 
each time the block in which the variable is declared is activated. When the 
variable does indeed need to be reset to an initial value, this execution 
expense is reasonable, but when the value of the variable does not change from 
one activation to another, the initialization expense can be avoided by 
declaring the variable to be a static rather than an automatic variable.

STATIC VARIABLES

A static variable is used when a 
of the block in which the variable 
the following ways:

variable must exist outside the activation 
s declared. This requirement can arise in

A variable that is shared between several external procedures 
(compilable units) must be EXTERNAL and must therefore be STATIC or 
CONTROLLED. An external STATIC variable is less costly than an 
external CONTROLLED variable and therefore should be used where 
possible. Once again, the default conventions make this 
recommendation easy to follow.

When a variable is used to keep information throughout the various 
invocations of a procedure, an INTERNAL STATIC variable should be 
used. Such a variable can be used, for example, to count the number 
of times a procedure is invoked.
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CONTROLLED VARIABLES

A control 1ed variable is used when the built-in storage management 
mechanism of the automatic or static storage class does not suit a particular 
application. This requirement can arise in the following ways:

When an external variable must have variable extents, a controlled 
external variable is a possible choice.

When a stack of variables is needed, a controlled variable is a 
convenient choice. When a program is modified to be reentrant the 
static variables can be replaced by controlled variables; then each 
variable is allocated (pushed down) before each reentry and freed 
(popped up) after the reentry.

When storage is a critical resource, controlled variables can be used 
to program a minimum use of storage.

PARAMETER VARIABLES

A parameter variable is used for the parameters of a procedure. For each 
parameter, execution time and space is required to transmit the location of the 
parameter from the calling to the called procedure, and in the called procedure, 
each reference to a parameter requires that this location be fetched. This 
execution expense can be reduced by declaring the would-be parameters as static 
variables in a block enclosing both procedures, or as external when the 
procedures are external to one another. Alternatively, the variables can be 
arranged in a structure or array, and the location of the structure or array can 
be provided as the value of an external variable or a transmitted parameter.

Any of these methods of improving execution efficiency, however, tend to 
obscure in what ways the two procedures are dependent upon one another. Using 
parameters makes explicit by means of what variables one procedure can affect 
the other.

BASED VARIABLES

A based variable is often used in a program that uses 1i nked data 
struetures. In such a program, locative values are used as the links and based 
variables are used for the structures connected by the links. The PL/I 
compiler, which is written in PL/I, makes extensive use of linked data 
structures and thus of based variables.

Only based variables can be allocated in an area variable; therefore based 
variables must be used in order to take advantage of the offset values and other 
special features that are available with area variables.

Based variables are also used in certain rather special ways. In some 
applications, it is necessary to operate on an aggregate value without fully 
knowing its storage type; in these cases, a based variable is used to examine 
part of the value. In string-processing applications that often arise in 
business programming, it is useful to interpret a given sequence of characters 
in more than one way by superimposing different aggregates of string variables; 
In these cases, based variables are used. These applications represent the 
situations in which PL/I makes gains in efficiency at the cost of breaking its 
rule of storage type consistency.
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DEFINED VARIABLES

A def i ned variable is used to associate a new name with an existing 
variable. In certain cases, as when i subs are used with a defined array, the 
new name can be mapped onto the existing variable in a special way. There are 
occasions on which a defined variable can do what a based variable can do; and 
on these occasions the defined variable is preferred.

In practice, defined variables are not often used in PL/I. They are in 
competition with based variables, and the based variables are considerably more 
general. In PL/I programming, a defined variable should never be introduced for 
the sole purpose of using the same storage for two purposes and thus saving 
s tor age.

THE INITIAL ATTRIBUTE

The INITIAL attribute is used with the name of 
in order to set the value of that variable when the

a scalar or array variable 
variable is allocated.

Initialization Syntax

The syntax of the INITIAL attribute is given by the following diagram:

INITIAL

I NIT

where i v i (initial value item) is defined as

( rep ) ( i v i ,... )

and where

rep (repli cator) 
i nteger.

is any expression whose value can be converted to an

ref is any variable reference or function reference.

cons t is a literal constant or is constant complex expression (a real, 
a sign, and an imaginary).

exp is any expression.

i v i,... is a sequence of one or more initial value items separated by 
commas.
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According to the syntax, there are two forms for an initial value item. 
The first form is the one that provides a single initial value or, if a 
replicator is used, a sequence of identical values. The syntax makes a special 
provision for references and constants in order to exempt them from being 
enclosed in parentheses. Consider the following attribute:

INITIAL(-2.8-15 I,(N-l)0)

The first item specifies a single initial value; the second item specifies a 
sequence of zero values whose length depends on the value of N when storage is 
allocated for the variable to which the attribute applies. Consider next the 
attri bute:

I NIT IAL(X,-V(I+2,J),(U)F(A-SIN(THETA,Z)))

This attribute could be used to initialize a six-element array (although such 
variety is unlikely for the initialization of a single array). The first item 
is a variable name, the second is a subscripted variable reference, and the 
third is a function reference that is evaluated and has four copies of its value 
entered i n the list.

The use of an asterisk, as
value to be left undefined; that is, 
following:

an initial value causes the corresponding 
t skips initialization. Consider the

INITIAL(C 5)(1,*))

If this attribute is applied to an array with ten elements, it 
the odd-numbered elements to 1 and leave the others undefined.

will initialize

The second form of initial value item allows the use of a parenthesized 
list of items as a sublist of a larger list. In this form, the replicator is 
required because the only reason for forming a sublist is to replicate it as a 
whole. Consider, for example, the attribute:

INITIAL((3)(-1,(2)0))

After application of the first replicator, this attribute is equivalent to:

I NIT I AL(-1,(2)0,-1,(2)0,-1, (2)0)

After expansion of the remaining replicators, this attribute is equivalent to:

I NITI AL(-1,0,0,-1,0,0,-1,0, 0)

When the replicator is a variable expression, it cannot be expanded until its 
values are actually required; for example:

I NITIAL((N)(-l,(M+3)0))

depends on the values of N and M.

The Use of the INITIAL Attribute

An INITIAL attribute cannot be used with a structure name. It follows that 
the attribute can only be used with a variable name that designates a scalar or 
an array of scalars. When the attribute is used with a scalar, it must supply 
exactly one value; when it is used with an array, it must provide one value for 
each element of the array. Each value must be suitable for assignment to the 
variable it initializes.
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As an example of several 
following declaration:

uses the INITIAL attribute, consider the

DCL 01 A,
02 B(M,N-2) FLOAT I NI T(. (M) (1, ( N-3 ) * ),
02 C CHAR(3) INIT("XXX”),
02 D,

03 E FLOAT INIT(0),
03 F POINTER INIT(NULL()), 

02 G FLOAT;

In this structure, the array A.B has its first column initialized to 1 and its 
remaining columns left undefined, the scalar variables C, E, and F are 
initialized to appropriate scalar values; and the scalar variable G is not 
initialized.

An INITIAL attribute is processed only as part of the storage allocation 
operation. Since a variable name of storage class PARAMETER or DEFINED is never 
subjected to the storage allocation (but rather is associated with existing 
storage) it is incorrect to use an INITIAL attribute with such names. A 
variable name of storage class BASED can be used either to allocate storage, in 
which case its INITIAL attribute is processed, or to be associated with existing 
storage, in which case the INITIAL attribute is ignored.

In the definition of string literal constants, given later in the section 
on ’’Constants”, a replicator is allowed for a string constant. For example:

(3)”AB"

is equivalent to ”ABABAB”. The PL/I 
replicator as a string replicator 
example, the declaration

processor wi11 
if it occurs i n

interpret an initial value 
an appropriate context. For

DCL S(3) CHAR(2) INIT((3)”AB”);

is invalid because the initial attribute is expanded to give the wrong result:

DCL S(3) CHAR(2) INIT(”ABABAB”);

To obtain the desired result, the programmer must write the string replicator 
(1) and then precede that with an initial value replicator:

DCL S(3) INIT((3)(1)”AB” );

This problem is a flaw in the design of PL/I; it arises only in the 
initialization of string variables, and the incorrect usage illustrated above is 
detected by the compiler.

THE CAPACITY OF STORAGE

A GCOS program is restricted to about a fifth of a million words (of 36 
bits or 4 characters each). The total space occupied by the following 
components of a PL/I program must therefore be less than this limit.

• Instructions and constants generated by the PL/I processor.

• Static storage assigned by the PL/I processor for internal static
variables and by the loader for external static variables.
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Library routines called by generated instructions and provided by the 
loader.

The automatic data stack for automatic variables.

System storage for explicitly allocated variables.

The size of the space required for the first two items is announced by the 
PL/I processor for each external procedure called in the program. The size of 
the library routines is announced by the loader; it varies from a minimum of ten 
thousand words to thirty or forty or more thousand words depending on the 
particular arithmetic and file routines called. The sizes of the last two items 
cannot be determined prior to execution since they depend on the relative time 
of block activations and ALLOCATE and FREE statement executions.

An estimate of the maximum size required for stack and system storage at 
any one time during execution can be made using the stack size announced by the 
PL/I processor for each external procedure and the sizes of variables allocated 
storage by means of an ALLOCATE statement. The user specifies the number of 
words required for all of the five items for the program on a $ LIMITS control 
statement (refer to the section on "Execution of a PL/I Program" in the PL/I 
User’s Guide). The program will not be loaded unless the limit specification is 
large enough for the first three items. Once loaded, the program seeks more 
space, beyond the specified limit, if necessary, to provide stack or system 
storage. As long as its requests for more space are honored by the operating 
system, as they ordinarily are, the estimation of stack and system storage sizes 
is not cruc i a 1.

Because stack and system storage allocations are made from opposite ends of 
the space remaining after the static storage requirements are satisfied, 
however, it is possible for the requesting of more storage to be insufficient. 
A system storage allocation can be made that uses space adjacent to the stack 
space, and until that allocation is freed, the stack space cannot be increased. 
To avoid this blockage, system storage allocations are prevented from using 
space close to the current stack bottom. When this allowance is not sufficient, 
however, the program will report a storage condition and be aborted. The user 
should then increase the limits specification and rerun the program.

For other discussions of the memory layout and size requirements of a PL/1 
program, refer to the section on "Debugging PL/I Programs" and the appendix on 
"Memory Requirements" in the PL/I User’s Guide.

CONDITIONS FOR STORAGE MANAGEMENT

As a result of the allocation operation, certain condit ions can occur. The 
purpose of such a condition is to report that there is no storage available for 
use by the allocated variable. A program can include ON statements to respond 
to such a condition by performing a remedial action (such as freeing some 
storage). If the program does not have ON statements for this purpose, the PL/I 
processor outputs an error message and terminates program execution. Details 
are given later, in the section on "Condition Handling".
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The STORAGE Condition

When the STORAGE condition occurs, one of the following cases applies:

The stack segment is nearly filled. The stack segment is used for 
activation regions. It can be exhausted either by allocation of a 
very large automatic variable or by a runaway recursive execution of a 
procedure. The simplest remedial action is to execute a GOTO to a 
statement outside the procedure being executed (or perhaps outside a 
nest of procedures and blocks); this action causes the destruction of 
the activation regions associated with the procedure and thus frees 
storage in the stack segment.

The system s to rage segment is nearly filled. The system storage 
segment is used for controlled variables and explicitly allocated 
based variables. The remedial action is to free some of these 
variables.

In most programs, no provision is made for remedial action for these conditions; 
that is, their occurrence is usually considered to be a programming error.

The STORAGE condition takes care of the classes of storage that can be 
allocated dynamically: automatic, controlled, and based. A condition is 
provided for these storage classes because they can cause storage overflow in 
one execution of a program but not in another. Storage can be allocated for one 
other class of storage: static. No condition is provided for that class because 
if overflow of static storage occurs for any execution of a program it will 
occur for all executions of the program, and therefore the program is invalid; 
furthermore, there is no way to free static storage and thus no remedial action 
for overflow.

The AREA Condition

The AREA condition occurs when an attempt is made to allocate storage in an 
area variable that cannot supply the storage. Two cases apply:

An ALLOCATE statement attempts to allocate a based variable for which 
there is no room in the area variable. A valid remedial action is to 
free some or all of the storage in the area variable (usually after 
copying the values into other storage or outputting them to a file). 
After this action, it is valid to resume program execution at the 
point of interruption.

An assignment statement attempts to assign an area value to an area 
variable that is too small. The remedial action is to transfer to 
some other place in the program; it is not valid to return to the 
point of interruption.

The AREA condition can play an important role in large scale programs for the
manipulation of linked data structures.
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SECTION VI I I

EXPRESSIONS

An expression is used in a program wherever a value is required. Some 
expressions are very simple; for example, the variable reference X and the 
constant literal 25 are both expressions. Some expressions combine several 
operators to calculate a value; for example, 12*ALPHA*(X-Y)f is an expression 
that contains three operators. Some expressions invoke procedures; for example, 
F(X) yields a value that is obtained by invoking a procedure at entry point F 
with the argument X.

The rules for the interpretation of expressions are complicated. One 
source of complexity is the requirement that each expression have an associated 
storage type; there are many storage types, and the rules for their use vary 
from one kind of expression to another. Further complexity arises from the fact 
that expressions can have aggregate values. Yet another complication arises in 
the interpretation of references to BASED and DEFINED variables.

A programmer who is learning PL/I can eliminate some of the complexity by 
ignoring features that he does not need. He may be able to avoid fixed-point 
arithmetic except for integer counters and subscripts; that simplifies the use 
of built-in functions and operators. He may be able to avoid aggregate 
expressions except, perhaps, for the assignment of one variable to another; that 
simplifies the rules for determining the storage type of expressions. He may be 
able to avoid BASED and DEFINED variables; that eliminates the difficult rules 
for equiva1encing variable names. By thus selecting a subset of the 
expressions, the programmer can skip over some of the more complicated rules.

In this section, the six kinds of expressions are listed and the features 
they have in common are described. Then each kind of expression is described 
separately and in detail.

GENERAL REMARKS ON EXPRESSIONS

An expression is one of the following six constructs:

variable reference 
constant literal 
constant reference 
programmed function reference 
built-in function reference 
operator expression
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Before these kinds of expressions can be discussed individually, some general 
features of expressions must be discussed. The following paragraphs consider 
the nesting and parenthesization of expressions, the determination of storage 
types, the use of aggregate expressions, and the rules for ordering and 
optimizing the evaluation of expressions. In the course of these general 
remarks, several examples of expressions are discussed in detail.

Nested Expressions

In some cases, an expression can contain other expressions. Specifically, 
an operator expression has expressions as its operands; a function reference has 
expressions as its arguments; a subscripted variable reference has expressions 
as its subscripts; and a locator-qualified variable reference has an expression 
as its locator-qualifier. Such a use of one expression within another is called 
nes ting. There is no restriction on nesting, and an expression can contain an 
expression that contains another expression that contains another expression and 
so on, to any reasonable depth of nesting.

An example of nested expressions appears in the following program:

P: PROC;
DCL (X,U) FLOAT;
DCL (I,J) FIXED;
DCL A(10,10) FLOAT;
DCL SIN BUILTIN;

X* = SIN(U)*A(1+2,J); 
• • • 
END;

The right-hand-side of the assignment statement is constructed of eight 
expressions, as follows:

The entire expression is an operator expression,, and it has SIN(U) and 
A(1+2,J) as its operands.

The expression SIN(U) is a built-in funct i on, and it has U as its 
argument.

The expression A(I+2,J) is a subscr i pted variable reference, and it 
has 1+2 and J as its subscripts.

The expression 1+2 is an opera tor express i on, and it has I and 2 as 
its operands.

The expressions U and I and J are s i mple variable references.

The express ion 2 i s a cons tant literal.

Observe that the nesting in 
contains a subscripted variable 
simple variable reference.

this example covers four levels: the product 
reference that contains a sum that contains a
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Parenthesized Expressions

Any expression can be enclosed in parentheses. There are two situations in 
which the use of parentheses is appropriate, as follows:

A parenthesized expression is used to modify the order in which 
operators are evaluated. For example, consider the expression:

2*(A+B)

The operator priority rules of PL/I, given later in this section, 
specify that the operation is performed before the ’+’ operation. 
However, the parentheses in this expression cause the ’+’ operation to 
be performed first.

A parenthesized expression is sometimes used as an argument in a 
function reference or a CALL statement; specifically, it is used when 
it is necessary to force an argument that would otherwise be 
interpreted as by-reference to be interpreted as by-va1ue. This is a 
specialized use of a parenthesized expression; it is discussed in the 
section on "Procedure Invocation".

The storage type and value of a parenthesized expression are the same as those 
of the enclosed expression.

Storage Types of Expressions

The interpretation of an expression yields a value and storage type. The 
value of an expression is determined each time the expression is evaluated 
during program execution. In contrast, the storage type is determined once, by 
the compiler, before the program is executed.

Storage types were defined earlier, in the section on "Value Storage". The 
storage type of an expression determines the way the value of an expression is 
represented. Because the storage type is determined in advance, the compiler 
can provide exactly the required storage for the value and can generate 
instructions that are appropriate for the value.

As a basis for the discussion of 
the following program:

the storage types of expressions, cons i der

B(I - 3)*COS(TH ETA);X

I FIXED;
(X,THETA) FLOAT;
B(20) FLOAT;
COS BUILTIN;

PROC;
DCL
DCL
DCL
DCL

• • •
END;
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The right-hand-side of the assignment statement is made up of seven expressions. 
The storage type of each expression is obtained as follows:

The storage type of the variable reference I is REAL FIXED BlN(17z 0). 
It is obtained from the first DECLARE statement according to the rules 
for a simple variable reference given later in this section.

The storage type of the constant literal 3 is REAL FIXED DEC(l,0). It 
is obtained from inspection of the constant literal itself according 
to rules given later in this section. Those rules specify that the 
constant literal is REAL because it does not have an I at the end, 
FIXED because it does not have an exponent, DECIMAL because it does 
not have a B at the end, and PRECISI0N(1,0) because it has one digit 
and that digit is not a fractional digit.

The storage type of the expression ’1-3’ is REAL FIXED BIN(18,0). It 
is obtained from the rules for the operator, which are given 
later, in the section on ’'Operations”. According to those rules, the 
constant literal is first converted to a REAL FIXED BIN(4,0) value; 
this can be done during compilation. The number-of-digits of the 
result is 18 in order to allow for the possibility of a carry from the 
subtraction operation.

The storage type of the subscripted variable reference B(I-3) is REAL 
FLOAT BlN(27). It is obtained from the third DECLARE statement 
according to the rules given later in this section. The subscript in 
the reference cancels out the extent in the declaration, so that the 
storage type of the reference is scalar.

The storage type of the variable reference THETA is REAL FLOAT 
BlN(27). It is obtained from the second DECLARE statement according 
to the rules for a simple variable reference.

• The storage type of the built-in function reference COS(THETA) is REAL 
FLOAT BIN(27). It is obtained from the rules for the COS built-in 
function, which are given later, in the section on "Operations”. In 
this simple case, the storage type of the result is the same as the 
storage type of the argument.

• The storage type of the entire expression is REAL FLOAT BIN(27). It 
is obtained from the rules for the '*' operation, which are given 
later, in the section on "Operations”. Observe that the storage type 
of the result is, in this case, the same as the storage type of the 
operands.

This example is typical in several respects. It shows that even a simple use of 
fixed-point arithmetic has some tricky points. It shows the simplicity of 
floating-point calculations, which often carry the single storage type REAL 
FLOAT BlN(27) straight through the calculation. And it shows how an aggregate 
is referenced to obtain a scalar value.
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Aggregate Expressions

The main part of this section is devoted to defining the six kinds of PL/I 
expressions. In the definition of each kind of expression, aggregate values are 
mentioned. That aspect of the definition of expressions is summarized here:

A variable reference or a programmed funct i on reference can have any 
storage type and therefore can have any aggregate type. This 
generality permits aggregate values to be handled as single entities 
when they are subjected to input/output, are copied from one variable 
to another, or are operated upon by a procedure.

A cons tan t 1i tera 1 or a cons tan t reference cannot (except for LABEL 
constant references) have an aggregate type because PL/I does not 
include a way of writing an aggregate constant. This omission 
reflects a decision of the designers of PL/I rather than a fundamental 
limitation of programming languages. It is quite easy to program 
around this deficiency.

Most bu i1 t — i n function references and operator express i ons can have 
aggregate types; in such a case, the aggregate type of the result is 
derived from the aggregate types of the arguments or operands. 
Operations on aggregates are performed on their respective components; 
that is, an operation is applied to the _Lth component of each argument 
to produce the J_th component of the result.

The aggregate variable references and programmed function references can be 
especially useful in writing a clear and efficient program. In contrast, the 
aggregate built-in function references and operator expressions are rarely 
useful.

Ordering and Optimizing the Evaluation of Expressions

The definition of PL/I deliberately leaves undef i ned certain aspects of 
expression evaluation. In fact, the only general rule for expression evaluation 
i s:

When the va1ue of 
time af ter the 
expression and at 
value.

an expression is required, it is evaluated at some 
last computation that could change the value of the 
some time before the computation that requires its

The vagueness of this rule permits the compiler to determine the details of the 
evaluation of an expression and thus produce optimized code for the program. 
For example:

When the same expression appears in several places, the compiler can 
evaluate it just once if the compiler can determine that the value of 
the expression does not change between the given appearances.

The subscripts of a variable reference can be evaluated in any order. 
The same freedom applies to the arguments of a function reference or 
the operands of an operator expression.

An argument or operand can be ignored if it does not affect the result 
of an operation. For example, the second operand of an '’and” 
operation can be ignored when the value of the first operand is 
’’false”.
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Thus there can be more than one way to evaluate a given expression. However, 
the variations that are permitted are chosen so that, in most cases, they have 
no effect on the results.

Some consideration must be given to the cases in which the undefined 
aspects of expression evaluation do affect the results of program execution. 
These cases arise because of s i de effects. A side effect is a change in the 
value of a variable or in the environment of the program that is caused by the 
evaluation of an expression. There are two kinds of side effects:

• The evaluation of a programmed function reference can invoke a 
procedure that produces a side effect.

• The evaluation of an expression can cause a condition to occur that 
signals an ON unit that produces a side effect.

It is easy to recognize the possibility of a side effect produced by a 
programmed function reference. It is not so easy to fully appreciate the 
possibilities of side effects from the occurrence of conditions. Such 
conditions as SIZE, FI XEDOVERFLOW, UNDERFLOW, and OVERFLOW can occur almost 
anywhere in the evaluation of an expression. Thus the side effects caused by an 
ON unit are especially significant.

As an example of a program whose results are partially undefined, consider 
the fol lowing:

P: PROC;
DCL (X,Y) FLOAT;
DCL (SYSIN,SYSPRINT) FlLE;
GET LIST(X,Y);
PUT LIST(F(XF(Y));

F: PROC(A) RETURNS(FLOAT);
DCL A FLOAT;
PUT LIST(A);
RETURN(A**2);
END ;

END;

The first PUT statement in this program must evaluate the expression:

F(X)+F(Y)

Each operand in this expression is a programmed function reference that has a 
side effect. The side effect is the listing of the value of the argument of the 
programmed function reference; that action changes the environment of the 
program. Because the order in which the operands of ’+’ are evaluated is 
undefined, the order in which the argument values are listed is undefined. 
Therefore, the result of executing the program is partially undefined. 
Nevertheless, the program is valid and it is also correct unless the programmer 
cares about the order in which X and Y are listed.

The results of executing a program 
because some part of the execution of 
suppose the statement:

are not necessarily undefined just 
the program is undefined. For example,

PUT LISTCA);

is removed from the program given in the previous paragraph. After this change, 
the evaluations of the programmed function references have no side effects. The 
execution of the program is still undefined because the order in which the 
operands of ’ + ’ are evaluated is still undefined. However, the resu1t of 
executing the program is fully defined; the program lists a single value that is 
the sum of the squares of X and Y.

8-6 DE05



VARIABLE REFERENCES

The interpretation of a variable reference begins with the determination of 
two items of information: the location of a variable in storage and the storage 
type of the variable. For some variable references, this information is easy to 
obtain;, for others, it requires a careful interpretation of the reference. 
Once this information has been obtained, the remainder of the interpretation of 
the variable reference depends on whether the variable reference is used as an 
expression or,as the target of an assignment. If the variable reference is used 
as an expression, then the value of the designated variable is retrieved and 
becomes the value of the reference. If the variable reference is used as the 
target of an assignment, then the assigned value is converted to the designated 
type and is placed in the designated variable.

Preliminary Remarks on Variable References

There are four kinds of variable references, as follows:

simple
subscripted
structure-quali fied
locator-quali fied

This list is given in order of increasing complexity and decreasing frequency of 
use. Thus, for example, a 1 oca tor-qua 1 Ified variable reference has a 
complicated interpretation but is used only in special programming applications.

Each of the four kinds of variable reference is described in detail in this 
section. Each description depends on the preceding descriptions; for example, 
the description of subscripted references makes use of rules that are given in 
the description of simple references.

THE MAJOR NAME IN A VARIABLE REFERENCE

A variable reference begins with a major name unless it is shortened or 
locator-qualified. The major name designates a variable in storage that is not 
part of a larger variable, and the remainder of the reference indicates the 
portion of the variable that must be retrieved. Consider, first, a simple 
variable reference:

SPEED3

In this case, the major name is the entire variable reference, so the value of 
the reference is the value of the entire variable. Consider, next, a 
subscripted variable reference:

A( 3)

In this case, the major name A designates an array variable ?nd ?(3)f designates 
an element of that array variable. Consider, finally, a strueture-qua1ified 
variable reference:

ALPHA.Q(I,J-3)

In this case, the major name ALPHA designates a structure variable and .Q(l,J-3) 
designates an element of a two-dimensional array that is a member of the 
structure variable.
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When a variable reference is shortened, the major name may be missing. For 
example, in certain contexts the structure-qua1ified variable reference given in 
the preceding paragraph can be shortened to:

Q( I,J-3)

In this case, Q is not the major name. Instead, the reference must be expanded 
to its original, complete form before it can be interpreted; and then ALPHA is 
the major name, as before.

The interpretation of a 1 oca tor-qua 1ified variable reference is quite 
different from the other three kinds of variable reference. In a 
1 ocator-qua1ified reference, the place of the major name is taken by a 
locator-quali fier. The 1 ocator-qua1ifier, like the major name, designates a 
variable in storage; however, it can be any reference that yields a locative 
value. Thus the designation is computed at the time the reference is 
interpreted instead of being given, as a name, once and for all when the program 
is written. This general facility is useful for list-processing applications of 
PL/ I .

Simple Variable References

A simple variable reference designates a major variable. The variable can 
be either a scalar or an aggregate.

THE FORM OF SIMPLE VARIABLE REFERENCES

A simple variable reference has the following form:

i d

where i d must be an identifier 
and that is not declared BASED.

that is declared as the name of a major variable

As an example of a simple variable reference, consider:

ALPHA

This name must have a declaration of the form:

DCL ALPHA ... ;

or the form

DCL 01 ALPHA ... , 
02 ..., 
• • • / 

where the ,...1 symbols indicate portions of the declarations that are not 
significant for this discussion.
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THE INTERPRETATION OF SIMPLE VARIABLE REFERENCES

A simple variable reference that is used for retrieval is interpreted as 
fol 1ows:

1. Name Resolution. Resolve the variable name. (The resolution of names 
is described earlier, in the section on ’’Declaration of Identifiers".) 
The result is the declaration of the variable name.

2. Storage Type Determination. Obtain the storage type of the variable 
name from its declaration. The result is the s torage type for the 
given reference.

3. Variable Loca t i on. Locate the variable designated by the variable 
name.

4. Vaiue Retr i eval. Retrieve the value of the designated variable.

Most of the interpretation is performed by the compiler; only the last step, 
value retrieval, is performed during program execution.

The location of the variable, mentioned in Step 3 of 
depends not only on the name of the variable but also on 
scope attributes, as follows:

the inter pretation,
its storage class and

If the name is STATIC EXTERNAL, then the variable is in the external 
region.

If the name is STATIC INTERNAL, then the variable is in the permanent 
internal region associated with the block in which the name is 
declared.

If the name is CONTROLLED EXTERNAL, then the variable is in the 
external region. If more than one variable has been allocated for the 
given name, then the most recently allocated variable is used.

If the name is CONTROLLED INTERNAL, then the variable is in the 
permanent internal region associated with the block in which the name 
is declared. If more than one variable has been allocated for the 
given name, then the most recently allocated variable is used.

If the name is AUTOMATIC INTERNAL, then the variable is in the 
activation internal region that corresponds to the block in which the 
name is declared. If the program is recursive, then there can be more 
than one activation internal region for a given block; the selection 
of one of these regions is made according to rules given in the 
section on "Procedure Invocation".

If the name is declared PARAMETER INTERNAL, then the variable is 
reached by first locating a POINTER temporary that is designated by 
the name and that is in the activation internal region that 
corresponds to the block in which the name is declared. Then the 
pointer is foil owed to the desired variable. Details are given in the 
section on "Procedure Invocation".

• If the name is declared DEFINED INTERNAL, then the variable is located 
by rules that are given in the section on "Storage Management".

Once the appropriate storage region has been located, the variable is uniquely 
designated by the given name.
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EXAMPLES OF SIMPLE VARIABLE REFERENCES

Examples of simple variable references are discussed here; they occur in 
the following program:

P: PROC;
DCL X DEC(6,3);
DCL 01 Yz

02 FLAGS BIT(6),
02 SI DEC 2) DEC(5);

DCL (SYS IN,SYSPRINT) FlLE;
... (assignments to variables occur here) 
PUT LIST(X,Y,FLAGS,SI DE);

END;

When execution of the program begins, the variables X and Y are allocated; 
then, when execution of the program is underway, values are assigned to the 
variables. Suppose that before the example output statement is executed, 
storage includes the region:

activation internal region, example program

S 9 9 9 9 9 9
00113 X /-/0/0/2/./3/6/3/

111111 
02022 Y .FLAGS 11 / 1/1/1/0/0/1/” B

S 9 9 9 9 9 
/-I-/0Z0/0/1/2/.SIDE(1)

S 9 9 9 9 9 
/+/0/0/0/0/8/(2)

Four variable references appear in the output statement in the example 
program:

X is a true simple reference (that is, it is not a shortened form of 
some other reference) and it yields:

storage type: REAL FIXED DEC(6,3)
-2.363value:

Y is also a true simple reference, and it yields:

01, 02 BIT(6) NONVARYING,storage type:
02 DIM(2) REAL FIXED DEC(5,0) 

"111001"B, 12, 8value:

• FLAGS is a shortened form of the structure-qua1ified reference Y.FLAGS
(as descr i bed unde raccordi ng 1yi n te r pre tedand

”Structure-Qua1ified Variable References” later in this section).

» SIDE is a shortened form of Y.SIDE(*) ’, which also is a 
structure-qualified reference.
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Subscripted Variable References

A subscripted variable reference designates a portion of a major array 
variable. The designated portion can be either a single element of the array, 
in which case it is a scalar, or a cross section of the array, in which case it 
is, itself, an array. The designated portion of the major variable is specified 
by one or more subscripts.

THE FORM OF SUBSCRIPTED VARIABLE REFERENCES

A subscripted variable reference has the following form:

mn( sub list )

where mn is the major name and sub 1i s t is the subscr i pt list. The major name 
must be an identifier that is declared as the name of a major variable and that 
is not declared BASED. The subscript list is a sequence of subscripts separated 
by commas/ and each subscript is either an expression or an A subscript 
expression must yield a value that can be converted to an integer. A 
subscripted variable reference that has one or more subscripts designates a 
cross-secti on of an array.

As an example of a subscripted variable reference, consider:

PHI(I+CEIL(.362*SQRT(X-1)),*,J-2)

In this example the major name is PHI and there are three subscripts. The first 
subscript is chosen to show that there is no special restriction on a subscript 
expression. The major name must have a declaration of the form:

DCL PH I( d i m , d i m , d i m ) ... ;

where each d i m represents a dimension and 1...’ represents a sequence of 
attr i butes.

THE INTERPRETATION OF SUBSCRIPTED VARIABLE REFERENCES

A subscripted variable reference that is used for retrieval of a value is 
interpreted as follows:

1. Name Resolution. Resolve the major name in the given reference. The 
result is the declaration of the major name.

2. Storage Type Determination. Make a copy of the storage type of the 
major name and delete from the DIMENSION attribute of the name each 
dimension that corresponds to a subscript that is an expression. Do 
not delete a dimension that corresponds to an subscript. If all 
dimensions are deleted, then delete the DIMENSION attribute. The 
result is the s to rage type of the reference.

3. Subscript Evaluation. Evaluate each subscript expression in the 
reference and, if necessary, convert its value to an integer. If a 
subscript value is outside the range of subscripts for which the array 
variable is allocated, the SUBSCRIPTRANGE condition occurs. The 
result of subscript evaluation is the fully-bound reference.
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*+. Vari able Location. Locate the variable designated by the major name; 
do this just as for a simple variable reference. The designated 
variable is the sequence of storage units that are selected by the 
fully-bound reference. A storage unit is selected if it matches the 
beginning of the designator or the entire designator of the storage 
unit. The match must be exact except that an in the reference
matches any integer subscript in a storage unit designator.

5. Value Retrieval. Retrieve the value of the designated variable.

Most of the inter pre tation is performed by the compiler; only 
evaluation and value retrieval are performed during program execution.

subscr i pt

The interpretation just given for a subscripted variable reference is 
complete, but it requires the following remarks to clear up difficult points:

The determination of the storage type by Step 2 and the retrieval of 
the value by Step 4 are consistent with one another. That is, the 
inter pretation of the reference guarantees that the value retrieved is 
always appropriate for the storage type of the reference.

The SUBSCRIPTRANGE condition mentioned in Step 3 is part of the 
mechanism provided by the language to detect errors or exceptions that 
occur during program execution. The programmer can supply statements 
to handle such a condition; more often, he allows the interpreter to 
report it as an error and abort the program. There is a cost 
associated with checking the value of a subscript, and the language 
allows the programmer to conveniently enable this check during program 
debugging and then disable it when the program enters production. 
Details are given later, in the section on ’’Condition Handling”.

• In general, a subscripted variable reference selects a subset of the 
elements of the array variable that is designated by the major name. 
When a subscript is an expression (and is evaluated to produce an 
integer), it participates in making the subset smaller. On the other 
hand, when a subscript is an ’*’, it makes no contribution to the 
selection and allows any subscript value to match its subscript 
pos i t i on.

Two special cases of the subscripted variable reference are of particular 
interest:

The most common use of a subscripted variable reference is that in 
which the major name is declared to be an array of scalars and the 
subscript list contains no In this case, the storage type of the 
reference is scalar and the fully-bound reference designates a single 
s tor age unit.

When every subscript is an the reference designates the entire 
variable designated by the major name. Specifically, it follows from 
Step 2 that no dimension is deleted from the storage type and it 
follows from Step 4 that the fully-bound reference matches the 
designator of every storage unit of the array variable.
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EXAMPLES OF SUBSCRIPTED VARIABLE REFERENCES

Examples of subscripted variable references are discussed here; they occur 
in the following program:

PROC;
DCL A(3,2) DEC(U);
DCL 01 PARTCO:1),

02 NAME CHARC6),
02 CODE DEC(5) ;

DCL SYSPRINT FILE;
DCL (lzJzM) FIXED;
DCL X FLOAT;
... (assignments to variables occur here)
PUT LIST(A(I+2ZJ-X**2)ZA(I+2Z*)ZA(*ZJ-X**2)ZA(*,*));
PUT LIST(PART(M), PART(*));
• • •
END;

Suppose that before the example output statements are executed, storage includes 
the region:

activation internal region, example program

S 9 9 9 9 
00242 A (1,1) /+/0/2/0/1/

S 9 9 9 9 
00244 (1,2) /+/0/2/0/2/

S 9 9 9 9 
00246 ( 2, 1) /+/0/2/0/3/

S 9 9 9 9 
00250 (2,2) /+/0/2/0/4/

$ 9 9 9 9 
00252 (3,1) /+/0/2/0/5/

$ 9 9 9 9 
00254 (3,2) /+/0/2/0/6/

X X X X X X 
03544 PART (O).NAME ,,/T/X/8/Q/2/4/,t

S 9 9 9 9 9 
03546 .CODE /+/0/0/5/9/3/

X X X X X X 
03550 (l).NAME "/W/6/R/F/E/D/"

S 9 9 9 9 9
03552 .CODE / +/ 8 / 0/ 0 /0/ 7/
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Subscripted references to the same variable differ in an important way when 
one reference has an expression for a subscript and the other has an for the 
same subscript. According to this view, four different references can be 
written for the variable A, as follows:

A(I+2,J-X**2) has expressions as subscripts. Suppose that the 
reference is interpreted when

I = 0, J = 5, and X = 2

Then the fully-bound reference is A(2,l). The result of the 
interpretation of the reference is:

storage type: REAL FIXED DEC(4,0)
value: 203

A(l+2,*) is a one-dimensional cross-section of the two dimensional 
array variable. Suppose the value of I is as before; then the 
fully-bound reference is A(2,*). The result of the interpretation of 
the reference i s:

storage type: D I M ( 2 ) REAL FIXED DEC(4,0)
value: 203,204

A(*,J-X**2) is also a one-dimensional cross-section of the two 
dimensional array variable. Suppose the values of J and X are as 
before; then the fully-bound reference is A(*,l). The result of the 
interpretation of the reference is:

storage type: DIM(3) REAL FIXED DEC(4,0)
value: 201,203,205

A(*,*) is a two-dimensional cross-section of the two dimensional array 
variable; that is, it designates the entire array variable. The 
result of the interpretation of the reference is:

storage type: 
value:

DIM(3,2) REAL FIXED DEC(4,0) 
201, 202, 203, 204, 205, 206

The variable PART is an array of structures, 
for the variable, as follows:

There are two different references

PART(M) has an express! 
evaluated when

on as its subscript. Suppose the reference is

M = 0

Then the fully-bound 
interpretation of the

reference is PART(0). The result of the
reference i s:

♦
storage type: 01, 02 CHAR(6) NONVARYING, 

02 REAL FIXED DEC(5,0)

value: "TX8Q24", 593

PART(*) designates the 
of the reference is:

entire variable. The result of interpretation

storage type: 01 DIM(l), 02 CHAR(6) NONVARYING, 
02 REAL FIXED DEC(5,0)

value: "TX8Q24", 593, "W6RFED", 80007
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Str.ucture-Qual i f Led Variable References

A structure-qualified variable reference designates a portion of a variable 
that is a structure or an array of structures. The designated portion of the 
variable can either be a scalar or another, smaller, aggregate; it is selected 
by level names and, in some cases, subscripts.

THE FORM OF STRUCTURE-QUALIFI ED VARIABLE REFERENCES

A structure-qualified variable reference has one of the following forms:

Irefl . 1ref2

Ire fl . 1 ref2 . 1 ref 3

... (and so on)

where 1 r e f.l, J. re f 2, l„r e f 3, and so on, are 1 eve 1 references. Each level 
reference is a level name optionally followed by a parenthesized subscript list. 
The subscript list is a sequence of subscripts separated by commas, and each 
subscript is either an expression or an A subscript expression must yield
a value that can be converted to an integer.

The rightmost level reference is the member reference and the other level 
references are cgn, £a i n i ng references. The leftmost containing reference must 
begin with a major name that designates an aggregate variable. The 
structure-qua1ified reference as a whole must be consistent with the declaration 
of the major name; that is, the first-level reference must designate a 
second-level component of the major variable, the second-level reference must 
designate a third-level component, and so on.

An example of a strueture-qua1ified reference is:

BASE.FIRST

In this example, there are two level references, each in the form of a simple 
reference. The name BASE is a containing reference and is the major name for 
the structure-qualified reference as a whole. The name FIRST is the member 
reference. The identifiers must be declared by a statement of the form:

DCL 01 BASE ... ,

where the '.. 
interest here

02 FIRST ...,
• • • /

symbols indicate portions of the statement that are not of

A second and more complicated example of a structure-qua 1ified reference 
i s:

X(J,*).Y3_TEST(2*M-3/I). PAR4
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In this example, there are three level references: the first two, the containing 
references, are in the form of subscripted references and the last one, the 
member reference, is in the form of a simple reference. The name X is the major 
name for the reference and it must be declared as a level-one, two-dimensional 
array of structures. The name Y3_TEST must be declared as a one-dimensional 
array of structures that is a member of X. The identifier PARU must be declared 
as a member of Y3_TEST. In other words, the following DECLARE statement must 
apply:

DCL 01 X( d i m , d i m ) ... ,

02 Y3__TEST( dim ) ...,

03 PAR4 ... ,
• • • /

• • • /

Observe that although the reference places constraints on 
the containing references, it places no constraint on the 
so PAR4 could be a scalar, array, or structure.

the aggregate type of 
member reference PAR4;

THE INTERPRETATION OF STRUCTURE-QUALIFIED VARIABLE REFERENCES

A structure-qua1ified 
interpreted as follows:

reference that is used for retrieval of a value is

1. Name Resolution. Resolve the major name in the given reference. The 
result is the declaration of the major name.

2. Storage Type Determination. Perform the following steps:

a. Make a copy of the normalized storage type for the major name of 
the given reference.

b. Edit the dimensions in the storage type as follows:

(1) Delete each dimension that is associated with a subscript 
expression in the given reference.

(2) Keep each dimension that is associated with an ’*’ subscript 
in a containing reference of the given reference, but move 
it so that it occurs in the storage-type component that 
corresponds to the member reference.

(3) Keep all other dimensions.

c. Edit the remainder of the storage type as follows:

(1) Keep the component of the storage type that corresponds to 
the member reference.

(2) If the member reference designates a structure, keep each 
component of the storage type that corresponds to a 
component of that structure.

(3) Delete the remaining components of the storage type.
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The result is the s tor age type of the reference. It is understood 
that, as the storage type is derived by the steps above, the necessary 
refinements are supplied to keep the storage type in a valid, 
normalized form. For example, when the last dimension in a DIMENSION 
attribute is deleted, the DIMENSION attribute itself is deleted.

Subscript Evaluation. Subscripts are 
described for a subscripted variable 
fu 1 1 y-bound reference.

evaluated just as already 
reference. The result is the

Var i ab 1 e Loca t i on . Locate the variable designated by the given major 
name; do this just as for a simple variable reference. The designated 
variable is the sequence of storage units that are selected by the 
fully-bound reference. A storage unit is selected by the fully-bound 
reference. A storage unit is selected if it matches the beginning of 
the designator or the entire designator of the storage unit. The 
match must be exact except that an in the reference matches any 
integer subscript in a storage unit designator.

5. Value Retrieval. Retrieve the value of the designated variable.

Most of the interpretation is performed by the compiler; only subscript 
evaluation and value retrieval are performed during program execution.

This interpretation, especially the determination of the storage type in 
Step 2, is complicated. Rather than discuss it in the abstract, a detailed 
discussion of an example reference is given in what follows.

EXAMPLES OF STRUCTURE-QUALIFIED VARIABLE REFERENCES

Examples of strueture-qua1ified references are discussed here; they occur 
in the following program:

P: PROC;
DCL 01 Q(2) STATIC EXTERNAL, 

02 Rl,
03 S1(U) FLOAT,
03 S2 CHAR(4),

02 R2(0:1,3) DEC(10);
DCL SYSPRINT Fl LE;
... (assignments to variables occur here)
PUT LI ST(Q(*) .Rl.SK I +3) ) ; 
• • •
END;

A diagram of the storage for Q would be of inconvenient size. Instead, a 
complete list of the designators for the storage units that make up the variable 
is g i ven:

Q( 1) .Rl.SK 1),
Q(1).R1.S2,
Q(1).R2(0,1),
Q(1),R2(1,1),
Q( 2) .Rl.SK 1), 
Q( 2) .R1.S2, 
Q(2).R2(0,1), 
Q(2) .R2(l,l),

Q( 1) .R1.SK2), Q( 1) . Rl.SK 3),

Q(1).R2(0,2), Q(1).R2(0,3 ),
Q(1).R2(1,2), Q(1).R2(1,3),
Q(2 ) . R1. S1(2 ), Q( 2) .Rl.SK 3),

Q(1).R2(0,2), Q(2)•R2(0,3), 
Q(2).R2(1,2), Q(2).R2(1,3)

Q( D.R1.SK4),

Q( 2).Rl.Sl(A),
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The interpretation of a structure-qualified reference is now given in 
detail. Suppose the reference

Q(*) .R1.S1( 1+3)

is interpreted when I = -1. The steps in the interpretation are:

1. (Name Resolution.) The DECLARE statement in the example program is 
assoc i a ted with Q.

2. (Storage Type Determination.) The following steps are performed:

a. A copy of the normalized storage type is made, giving:

01 DIM(2),
02,

03 DIM(L) FLOAT,
03 CHAR(4),

02 DIM(2,3) DEC(IO)

Observe that the normalized form of the dimension ’0:1’ (declared 
for R2) is 2.

b. The dimension is edited. The dimension associated with ’1 + 3’ is 
omi tted, gi vi ng:

01 DIM(2),
02,

03 FLOAT,
03 CHAR(4),

02 DIM(2,3) DEC(10)

Then the dimension associated with the subscript in the first 
containing reference is moved to the storage type component 
associated with the member reference, giving:

01,
02,

03 DINK 2) FLOAT,
03 CHAR(L),

02 DIM(2,3) DEC(IO)

If this dimension were not moved, it would be deleted by Step 2c, 
and that would be inconsistent with the interpretation of an 
subscr i pt.

c. The remainder of the storage type is edited. The component of 
the storage type that corresponds to the member reference, 
Sl(l+3) is kept. Since SI is not a structure, nothing else is 
kept. The result is:

03 DIM(2) FLOAT

A level number on a storage type that is not a structure is not 
permitted, so the final result is

DIM(2) FLOAT
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3. (Subscript Evaluation.) The subscript expression 
reference is evaluated. The fully-bound reference is

Q(*) .R1.SK2)

i n the gi ven

4. (Value Retrieval.) An inspection of the 22 designators for the scalar 
components of Q shows that the fully-bound reference matches two, 
name 1y:

Q( 1) .Rl.SK 2)
Q( 2) .Rl.SK 2)

i he sequence of two scalar values associated with these designators is 
retrieved and is the value of the given reference. Observe that the 
storage type of this result is identical to the storage type obtained 
in Step 2.

If the difference between two subscript expressions is ignored and if 
shortened references are excluded, then there are 18 distinct references to the 
variable designated by Q, as follows:

Q(*)
Q(*),R1
Q(*) .Rl.SK*)
Q(*) .Rl.SK J)
Q(*).R1.S2
Q(*) .R2(*,*)
Q(*).R2(*,K)
Q(*).R2(J,*)
Q(*).R2(J,K)

Q( I )
Q( I ) .R1
Q( I ) .Rl.SK*) 
Q( I ) .Rl.SK J) 
Q( I ) .R1.S2 
Q( I) .R2(*,*) 
Q(I).R2(*,K) 
Q(I).R2(J,*)
Q(I).R2(J,K)

One of these forms of reference, Q(*) .Rl.SK J), 
detail. Several other forms are now considered:

has just been considered in

Q(I).R1.S1(J) (assume I = 1 and J = 3)

storage type: FLOAT

designator: Q( 1) .Rl.SK 3)

(Out of the 18 forms of reference for Q, only three have scalar 
values. This is one of them.)

Q(I).R2(J,K) (assume I = 1, J = 0, K = 2)

storage type: DEC(IO)

designator: Q(l).R(0,2)

(This is the second form that has a scalar value. The third is 
Q(I).R1.S2.)
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Q(*)

storage type: 01 DIM(2),
02,

03 DIM(U) FLOAT,
03 CHAR(4),

02 DIM(2,3) DEC(10)

des i gnator s: (The full sequence of 22 designators)

(This reference designates the entire variable associated with Q.)

Q( I ).R1 (assume I = 2)

storage type: 01,
02 DIM(4) FLOAT,
02 CHAR(U)

designators: Q( 2 ) . R1. S 1( 1), Q( 2 ) . R1. S 1( 2 ),
Q( 2) .Rl.SK 3), Q( 2 ). R1. S1 ( 4 ),

Q( 2) .R1.S2

(This storage type is essentially the declaration of Rl; only the 
level numbers have been changed.)

Q(*) .Rl.SK*)

storage type:

des i gnators:

(Here, two separate 
array. )

DIM(2,4) FLOAT

Q(1).R1.S1(1), Q(1).R1.S1(2),
Q(l) .R1.SK3), Q(l) .Rl.Sl(U),

Q(2) .Rl.Sl(l), Q( 2) .Rl.SK 2),
Q(2).Rl.S 1(3), Q(2) .R1.SK4)

dimensions combine to make a two-dimensional

Q(I).R2(*,*) (assume I = 2)

storage type: DIM(2,3) DEC(10)

des i gnators:

(Observe that the 
but this does not

Q(*).R2(J,*)

Q(2).R2(0,l), Q(2).R2(0,2), Q(2).R2(0,3),
Q(2).R2(1,1), Q(2).R2(1,2), Q(2).R2(1,3)

dimension of R2, which is ’0:1’, is normalized to 2; 
affect the subscripts used in the designators.)

(assume J = 0)

storage type: DIM(2,3) DEC(10)

designators: Q(1).R2(0,1), Q(1).R2(0,2), Q(1).R2(0,3),
Q( 2).R2(0,1), Q(2).R2(0,2), Q(2).R2(0,3)

(Here, the storage type is exactly the same as for the previous 
example; but the sequence of designators, and therefore the value, is 
d i fferent.)

Locator-Qualified Variable References

A 1ocator-qua1ified variable reference makes use of a POINTER or OFFSET 
value to locate a variable. Once the variable is located, it can be accessed by 
any of the means thus far described in this discussion of variable references.
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THE FORM OF A LOCATOR-QUALIFI ED VARIABLE REFERENCE

A 1 ocator-qua 1ified variable reference has the following form:

1 q -> br

where j~g is the 1 oca tor qua 1 i f i er and b r is the based reference. The locator 
qualifier must be a reference that yields a POINTER or OFFSET value. The based 
reference must have the form of a simple variable reference, a subscripted 
variable reference, or a structure-qualified variable reference; however, the 
major name of the based reference must be declared BASED.

A simple example of a locator-qualified reference is:

P->X

In this example, P must be declared POINTER or OFFSET, and X must be declared 
BASED. In an English reading of a program, the reference can be expressed as 
"the X pointed to by P” or, more descriptively, as "the value obtained by 
interpreting the value of P as a pointer to a variable that has the storage type 
gi ven by X".

Other examples of locator-qualified

F(X+2,3*M)->Y

Q.ALPHA(J,K).R2->TOP(I+3).NEXT

B->G->H

references are:

In the first example, the locator qualifier is a function reference or a 
subscripted reference (depending on the declaration of F) that must be declared 
POINTER or OFFSET. In the second example, both the locator qualifier and the 
based reference are complicated structure-qua1ified references. In the third 
example, the locator qualifier for the entire reference is B->G, and the locator 
qualifier for B->G is B. For a given reference, it is always the rightmost 
arrow that separates the locator qualifier from the based reference.

ASSOCIATED STORAGE TYPES FOR LOCATOR VALUES

Every locator value has an associ ated s torage type. This storage type is 
not the storage type of the locator value itself; that storage type is either 
POINTER or OFFSET. Instead, the associated storage type is the storage type of 
the variable that is designated by the locator value.

The associated storage type is created when the locator value is created. 
Two cases apply:

A locator value is created as the result of the application of the 
ADDR built-in function to a given variable reference. In this case, 
the associated storage type is the storage type of the given variable 
reference.

A locator value is created when an ALLOCATE statement is executed on a 
given variable name; the statement causes a locator value to be 
assigned (through a SET option) to a locator variable. In this case, 
the associated storage type is the storage type of the given variable 
name.
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The associated storage type accompanies a locator value wherever it goes: as 
the value is assigned from one variable to another or as the value is returned 
by a programmed function reference.

As an example of the handling of associated data types, consider the 
following program:

P: PROC•
DCL (P1,P2,P3,PU) POINTER;
DCL A(10) FLOAT;
DCL 01 Q BASED,

02 R1 FLOAT, 
02 R2 DEC(5);

ALLOCATE Q SET(Pl);

P2 = ADDR(A);

P3’= ADDR(A(3));

PU*= P2;
• • •
END;

After the ALLOCATE statement, the POINTER variable designated by Pl contains a 
pointer value; and that value has the associated storage type ’01, 02 FLOAT, 02 
DEC(5)’. After the first assignment statement, P2 has a pointer value whose 
associated storage type is DIM(10) FLOAT. After the second assignment 
statement, P3 has a pointer value whose associated storage type is FLOAT. After 
the last assignment statement, PL has a pointer value whose associated storage 
type is DIM(10) FLOAT.

However, the PL/I compiler will accept and execution will not detect a 
locator reference in which the locator variable qualifies a variable of storage 
type different than its most recent associated storage type. As may be 
imagined, the absence of matching of the associated storage type of a pointer 
with the storage type of the variable pointed to can lead to program errors. 
Sometimes, of course, mismatching is done deliberately.

THE INTERPRETATION OF LOCATOR-QUALIFIED VARIABLE REFERENCES

A locator-qualified variable 
value is interpreted as follows:

reference that is used for retrieval of a

1. Name Resolution. Resolve the major name in the based reference of the
given reference. The result is the declaration of the major name.

2. Locator-Qualifier Evaluation. Evaluate the locator qualifier for the
given reference. The result is a pointer value or an offset value; if
it is an offset value, convert it to a pointer value. The result is
the base pointer va1ue for the given reference.

3. Base-Variable Location. Use the base pointer value to locate a
position in storage. At that position, a variable begins whose
storage type is the same as the associated storage type of the base 
pointer value. This variable is the base va r i ab1e for the given 
reference.

L. Based-Variable Overlay. Overlay a based var i able on the base 
variable. That is, define the set of designators that would have been 
produced if the base va r i able had been allocated in accordance with 
the declaration of the major name of the based reference.
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5* Based Reference Interpretation. Interpret the based reference that 
occurs in the given reference. That is, determine its storage type, 
evaluate its subscripts, and evaluate it. The results are the storage 
type and value for the entire 1 oca tor-qua!ified reference.

6. Based-Variab1e Withdrawal. Withdraw the based variable from the base
variable; that is, discard the designators that were defined in Step
4.

Most of the interpretation is performed by the compiler; only 1 oca tor-qua 1ifier 
evaluation (Step 2) and a portion of based reference interpretation (Step 5) are 
performed during program execution.

According to Step 3 of the interpretation, the associated storage type of 
the base pointer matches the storage type of the major name in the based 
reference of the given 1 ocator-qua 1ified reference. As noted above, however, a 
mismatch is not detected, and the interpretation simply assumes that the 
associated storage type of the locator variable does match the based reference 
storage type.

EXAMPLES OF LOCATOR-QUALIFIED VARIABLE REFERENCES

Examples of 1 oca tor-qua 1ified variable references are discussed here; they 
occur in the following program:

PROC •
DCL (N,K) FIXED;
DCL 01 H(100) STATIC, 

02 FLAGS BIT(3), 
02 ITEMC2),

03 TEXT CHAR(6),
03 COUNT DEC(5), 

02 STYLE DEC(4);
DCL 01 I(N) BASED, 

02 T CHAR(6), 
02 C DEC(5);

DCL Pl POINTER;
DCL SYSPRINT FlLE;
... (assignments to variables occur here) 
PUT LIST(Pl->I(2*K-4));

END;
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Just before 
includes the

the examples of
reg i ons:

retrieval are interpreted, suppose that storage

permanent internal region, example program_________

111
17762 H (1).FLAGS ,I/1/1/O/,,B

(... and so on for the first 7 elements of H)

111
2014U H (8).FLAGS ,,/l/l/0/"B

X X X X X X
20145 ------- .ITEM(1).TEXT "ZQZNZAZIZLZSZ"

S 9 9 9 9 9
20147 ------------------------ .COUNT Z+Z0Z0Z1Z4Z4Z

X X X X X X
20151 ------------------ (2).TEXT "/A/C/C/I/D/E/"

S 9 9 9 9 9
20153 ------------------------ .COUNT / + /0/0/0/9/0/

S 9 9 9 9
20155 ------- .STYLE /-/0/0/1/3/

(... and so on for the remaining 92 elements of H)

internal region, example program

The inter pretation of a 1 oca tor-qua1ified reference is now given in detail. 
Consider the reference:

Pl->I(2*K~4) (assume K = 3, N = 2)

The steps in the interpretation are:

1. (Name Resolution.) The declaration of the major name, I, in the base 
reference is determined. It is given by the third DECLARE statement 
in the example program.

(Locator-Qua 1ifier Evaluation.) The locator qualifier is the simple 
variable reference, Pl; its value is the base pointer value, 20145. 
The associated storage type of the value must be the same as that 
declared for I. In fact, the only valid source for such a value would 
be ADDR(I).

(Base-Variable Location.) The base pointer value is used to locate a 
position in storage. Three variables begin at this position: 
H(8).ITEM(1).TEXT (a scalar), H(8).ITEM(1) (a structure), and 
H(8).ITEM (an array). The last of these has the same storage type as 
I, and it is therefore the base variable.
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4. (Based-Variab1e Overlay.) The based variable is overlaid on the base
variable. New designators are defined, and a portion of the diagram 
of storage is changed to read as follows:

20144
111

H (8). FLAGS ,,/0/0/0/,,B

20145

20147

20151

20153

20155

X X X X X X 
l(l).T ------- .ITEM(1).TEXT "ZOZNZAZI/L/SZ"

S 9 9 9 9 9
. C ------------------------ .COUNT / + ZO / 0 /1/4/4 /

X X X X X X 
(2).T ------------------ (2).TEXT "/A/C/C/I/D/E/"

S 9 9 9 9 9
.C ------------------------ .COUNT /+/0/0/0/9/0/

.STYLE
S 9 9 9 9 

/-/0/0/1/3/

Observe that the variable I matches the base variable only because N 
is 2 at the time this step is performed; if N had any other value, the 
reference would be invalid.

5. (Reference Evaluation.) The subscript in the based reference is 
evaluated and the fully-bound reference is 1(2). The result is:

storage type: 01,
02 CHAR(6), 
02 DEC(5)

value: "ACCIDE", 90

6. (Based-Variable Withdrawal.) The designators defined in Step 4 are 
discarded, and the diagram returns to the form that appeared at the 
beginning of this discussion.

Shortened Forms of References

The conventions for shortening variable references are described here, and 
specific guidelines for their use are given. A reference should be shortened 
only in order to make the program in which it occurs more clear to those who 
must read it. A reference should not be shortened merely to reduce the number 
of keystrokes required to type the program.

SUBSCRIPT-LIST DELETION

A subscripted reference can be shortened by deleting its subscript list, 
provided that all subscripts are ’*’ subscripts. Similarly, . a 
structure-qualified reference can be shortened by deleting all of its subscript 
lists provided all of its subscripts are ’*’ subscripts.
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Examples of Subscript List Deletion

Examples of the shortening of a reference by deletion of subscript lists 
are:

Reference

A( *)

B(*,*)

C(*). D . E ( *, * )

Shortened Reference

A

B

C.D.E

Observe that the third reference, C(*).D.E(*,*), cannot be shortened to C(*).D.E 
or C.D.E(*,*); if any subscript list is deleted, all must be.

Gu i de 1i ne s for Subscript List Deletion

The deletion of a subscript list is not recommended. Any reference with an 
is necessarily a reference to an aggregate value. The PL/I facilities for 

handling aggregates are expensive and should not be used casually. Indeed, the 
presence of a subscript list composed of asterisks is a useful warning that an 
aggregate value is being processed.

NAME DELETION

A structure-qualified reference can be shortened by deleting one or more of 
its containing references, provided that the deleted references are 
unsubscripted names and provided that the deletion does not change the 
declaration of the reference.

The declaration of a reference is changed if the unshortened reference is 
governed by one declaration and the shortened reference is governed by another. 
The declaration that governs the reference is determined by rules given earlier 
in the section on "Declarations".

A subscript list can be moved within a reference. The purpose of this 
convention is to allow deletion of a containing reference which, aside from its 
subscript list, satisfies the conditions for deletion. For example, the 
reference X(I+2).Y can be written as X.Y(1+2) and then, If the declaration does 
not change, as Y( I +2 ) .
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Examples of Name Deletion

The following program is used to illustrate 
names to produce shortened references:

the deletion of containing

P: PROC;
DCL 01 VEHICLE,

02 SERIAL DEC(10), 
02 COST DEC(8,2) ;

BEGIN;
DCL 01 SALE, 

02 CUSTOMER, 
03 NAME CHAR(30), 
03 ADDRESS CHAR(60), 

02 SUPPLIER, 
03 NAME CHAR(8), 
03 COST(2) DEC(10,2);

DCL COST DEC(10,2);
• • • 
... (example references occur here)
• • • 
END; 

END;

Observe that NAME is declared twice and COST is declared three times. These 
declarations are all valid but they make certain shortened references invalid.

Assume that the declarations explicitly shown are the only declarations in the 
program. Then the references that could be used in the inner block are 
classified as follows:

Unshortened References

VEH ICLE.SERIAL

VEHICLE.COST

SALE.CUSTOMER

SALE.CUSTOMER.NAME

SALE.CUSTOMER.ADDRESS

SALE.SUPPLIER.NAME

SALE.SUPPLIER.COSTCI)

Valid Shorten!ng

SERIAL

CUSTOMER

CUSTOMER.NAME

CUSTOMER.ADDRESS
SALE.ADDRESS
ADDRESS

SUPPLIER.NAME

SUPPLIER.COST(I) 
SALE.COST(I)

Invalid Shor ten i ng

COST

SALE.NAME
NAME

SALE.NAME
NAME

COST(I)
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The interesting references are the "invalid shortenings", 
for as foilows:

They are accounted

The references SALE.NAME and NAME are invalid because they are 
ambiguous. Each is a partia 11y-qua1ified reference to both 
SALE.CUSTOMER.NAME and SALE.SUPPLI ER.NAME.

The reference COST is an invalid shortening of VEHICLE.COST because 
(in the inner block) it would be interpreted as a reference to the 
COST declared in the third DECLARE statement.

The reference C0ST(I) is an invalid shortening of 
SALE.SUPPLI ER.COST(I) because (since subscripts are ignored in the 
resolution of a reference) it would also be interpreted as a reference 
to the COST declared in the third DECLARE statement.

Guidelines for Name Deletion

The deletion of the leftmost reference of a structure-qua1ified variable 
reference is not recommended, even if a careful analysis shows that the result 
is correct. The leftmost level reference is much more important than the other 
level references because it determines which major variable is being referenced.

The moving of a subscript list from one level reference to another within a 
structure-qua1ified reference is not recommended. Although it has no effect on 
the interpretation of the reference by the processor, it gives the human reader 
the wrong storage type for the reference. The deletion of containing references 
should be confined to those that are originally unsubscripted.

LOCATOR-QUALIFIER DELETION

A 1 ocator-qua1ified reference can be shortened by 
1 oca tor-qua1ifier, provided that the major name of the based 
declared with the attribute

deleting the 
reference i s

BASED(_x)

where a is the 1 oca tor-qua1ifier that occurs in the unshortened reference.

Guidelines for Locator-Qua 1ifier Deletion

The deletion of a 1 oca tor-qua 1ifier is not recommended for most 
applications. The use of based variables is an error-prone aspect of PL/I 
programming, and the deletion of a 1 ocator-qua1ifier introduces additional 
possibilities for errors.
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The Cost of Variable References

The relative complexity of the various kinds of variable references is a 
bad guide to the cost of these references. A PL/I program is compiled, and the 
cost of the interpretation of any construct, and references in particular, is 
divided between compilation and execution. Whatever can be performed during 
compilation becomes a negligible cost because it is performed only once for each 
compilation of the program.

The cost of interpreting 
approximately the same for all 
any expressions (subscripts or a 
A long and complicated reference 
as

a reference consists of a cost that is 
variable references plus the cost of evaluating 
locator qualifier) that occur in the reference, 
that contains only constant expressions, such

ALPHA(3).BETA.GAMMA( 5, 2)

costs no more to interpret than a simple variable reference. Generally 
speaking, the organization of data into structures and the corresponding use of 
structure-qua 1 ified variables do not, in themselves, increase the cost of 
referencing the data.

CONSTANT LITERALS

A constant literal designates a computational constant value. The constant 
literal gives, in the spelling of the construct itself, both the data type and 
the value of the constant it designates. For example, the constant literal 23.9 
designates a constant whose storage type is REAL FIXED DECIMAL (3,1) and whose 
value is 23.9. The spelling of a constant literal is almost, but not quite, the 
same as the stored value representation it designates. For example, the 
constant literal 23.9 has the stored value representation ’+23.9*.

A constant literal designates a constant that requires at most 64 words of 
storage (for the longest possible character-string constant). Furthermore, the 
value of a constant literal can always be determined at compilation time, and 
various optimization techniques can be applied to reduce the cost of its 
storage. For these reasons, the allocation and initialization of storage for 
the value designated by a constant literal need not be described. It is 
sufficient to show how, for a given constant literal, the storage type and value 
of the literal can be determined.

Arithmetic Constant Literals

The language provides a full range of arithmetic constant literals, 
including both FIXED and FLOAT scaling, DECIMAL and BINARY base, and REAL and 
COMPLEX mode.
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THE FORM OF ARITHMETIC CONSTANT LITERALS

The
rules:

form of the arithmetic constant literals is given by the following

1. An i n teger literal is a sequence of one or more digits.

2. A fixed literal is either an integer literal or is an integer literal 
modified by the insertion of a decimal point before or after any 
digit.

3. A float literal is a fixed literal (called the manti ssa) followed by
an E followed by a signed integer literal (called the exponent).

4. A deci ma 1 literal is any fixed or float literal. The exponent of a
float decimal is considered to be a power of ten.

5. A binary literal is a fixed or float literal followed by a B. Except
for an exponent, the literal must contain only binary digits. The 
exponent of a float binary literal is interpreted as a decimal number; 
it is considered to be a power of two.

6. A rea1 literal is any decimal or binary literal.

7. An i mag i nary literal is any decimal or binary literal followed by an

8. An ar i thme t i c literal is any real or imaginary literal.

An arithmetic literal must not be more than 256 characters long.

The rules just given build on one another, 
build a fixed literal, a fixed literal is used to 
on. The following shows how the rules are 
’lllOlllOB1 and f8 . 2300E-3 I ’ :

An integer literal is used to 
build a float literal, and so 
used to build the literals

1. i nteger 11101110 82300

2. f i xed 11101110 8.2300

3. float — — — 8.2300E-3

U. decimal — 8.2300E-3

5. bi nary 11101110B — — —

6. r ea 1 11101110B 8.2300E-3

7. i mag i nary M. «. 8.2300E-3I

8 . ar i thme t ic 11101110B 8 . 2300E-3I

8-30 DE05



THE INTERPRETATION OF ARITHMETIC CONSTANT LITERALS

The interpretation of an arithmetic constant literal must yield a storage 
type and a value. The storage type is determined as follows:

• The aggregate type is always scalar.

• The mode is COMPLEX if the reference ends with an I, and is REAL 
otherwi se.

• The scaling is FLOAT if the reference has an E followed by an exponent 
and is FIXED otherwise.

• The base is BINARY if the reference contains a B and is DECIMAL 
otherwi se.

• The number-of-di gi ts in the preci s i on is obtained by counting all the 
digits except those in an exponent.

• The sea 1e-factor in the precision is obtained by counting the digits 
to the right of the point except for those in an exponent. If there 
is no point, the scale-factor is zero.

The va1ue of the constant literal is the value represented by the spelling of 
the 1i tera 1 .

EXAMPLES OF ARITHMETIC CONSTANT LITERALS

Examples of arithmetic 
accompanied by its storage type

constant literals follow. Each 
and its representation in storage.

examp 1e i s

Constant Li teral Storage Type Represen ta t i on

23.9 REAL FIXED DECIMAL(3,1) + 23.9

0 REAL FIXED DECIMAL(1,O) + 0.

000 REAL FIXED DECIMAL(3,0) + 000.

110.011011101B REAL FIXED Bl NARY(12,9) +110.011011101B

OB REAL FIXED BINARY(l,0) + 0.B

5.8000000E3 REAL FLOAT DECIMAL(8) +58000000.E-4

.1110010011101E-3B REAL FLOAT BINARY(13) + . 1110010011101E-3B

568E0I COMPLEX FLOAT DECIMAL(3) +000.EO+568.E0I

9.000E5I COMPLEX FLOAT DECIMAL(L) +0000.E0+9000.E2I

1010 111010 IB 1 COMPLEX FIXED BINARY(11,O) +10101110101.Bl
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GUIDELINES FOR ARITHMETIC CONSTANT LITERALS

The storage type of an arithmetic constant literal should be chosen for 
convenience and clarity. Use FIXED scale unless the magnitude of the values 
requires an exponent for convenience of representation. Use DECIMAL base except 
in the very rare case that the problem formulation depends on binary arithmetic. 
Use COMPLEX mode if the value has an imaginary part.

Consider, for example, the assignment of a constant to a variable. Suppose 
that variable, X, is declared as follows:

DCL X FLOAT;

so that its storage type is FLOAT BIN(27). In order to assign the value 24 to 
this variable, it might be thought appropriate to use a FLOAT BIN(27) literal 
constant and write:

X = 000000000000000000000011000E0B

However, this statement is inconvenient and unclear. Instead, it is better to 
wr i te:

X = 24;

The necessary conversion from FIXED DEC(2) to FLOAT BlN(27) is performed at 
negligible cost during compilation; therefore no conversion is required when the 
statement is executed.

String Constant Literals

The language provides constant literals for both character-string and 
bit-string values. Special conventions permit the use of any ASCII character 
within a charact er-string literal, and thus provide complete generality in 
string manipulation.

THE FORM OF STRING CONSTANT LITERALS

The form of the string constant literals is given by the following rules:

A character-s tr i ng literal is an optional replication factor (defined 
by Rule 3), followed by a double-quote character, followed by a 
sequence of zero or more ASCII characters, followed by a double-quote 
character. The character sequence between the double-quote characters 
represents the value of the string; however, two double-quote 
characters must appear in the sequence for each double-quote character 
i n the value.

A bi t-s t r i ng literal is an optional replication factor, followed by a 
double-quote character, followed by a sequence of zero or more 0 and 1 
characters, followed by a double-quote character, followed by a B.

A repli cat i on factor is a parenthesized integer literal whose value is 
greater than zero. Suppose the value of the replication factor for a 
given reference is n. and that the sequence of characters between the 
double-quote characters is s,. Then an equivalent string literal is 
obtained by replacing s. with n. copies of s. and deleting the 
replication factor.
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A string literal must not be more than 256 characters long. If a string literal 
has a replication factor, the restriction on length is applied to the equivalent 
literal that does not have a replication factor. For example, (257)"0"B is 
considered to be a literal of 257 characters and therefore is invalid.

THE INTERPRETATION OF STRING CONSTANT LITERALS

The interpretation of a string constant literal must yield a storage type 
and a value. The storage type is determined as follows:

The aggregate type is always scalar.

The literal is BIT(jn) or CHARACTER(jn) depending on whether a B occurs 
at the end or not. The n. is the number of characters in the sequence 
between the double-quote characters; a pair of double-quote characters 
in the sequence counts as one character.

• The literal is always NONVARYING.

The value of the literal is the sequence between double-quote characters with 
the provision, already noted, that two double-quote characters in the sequence 
represent one double-quote character in the value.

EXAMPLES OF STRING CONSTANT LITERALS

Examples of string constant literals follow:

Constant Literal

"SAY NOTHING."

"SAY ""STOP!"" "

III!

"iooon"B

""B

(2)"M0SHE "

(12)"1"B

Storage Type

CHARACTER 12) NONVARYING

CHARACTER(12) NONVARYING

CHARACTER(O) NONVARYING

Value Representation

"SAY NOTHING."

"SAY "STOP!"."

BIT(6) NONVARYING

BITCI) NONVARYING

BIT(O) NONVARYING

"100011"B

"1"B

Illi n

CHARACTERC12) NONVARYING

BITC12) NONVARYING

"MOSHE MOSHE "

"iiiuiiiiiir'B
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Attributes for Constant Literals

The complete attribute set for any constant literal 
following diagram:

is g i ven by the

PRECISION
( nd )

CONSTANT

In this di agramz

nd (number of digits) is an unsigned integer

sf (scale factor) is an optionally signed integer

n (maximum length) is an unsigned integer

The attribute set for a constant literal is never written in a 
must be determined as part of the interpretation of the program.

program; but it

The Cost of Constant Expressions

Constant expressions are evaluated at execution time by instructions 
generated by the PL/I compiler instead of by the compiler itself. In general, 
then, despite their worth for documentation, constant expressions should be 
evaluated by the programmer and the resulting constant written in place of the 
expression (which may be relegated to a comment).

CONSTANT REFERENCES

A constant reference designates a constant statement address value or a 
constant FILE value. A constant reference can appear in two kinds of context. 
The most common context is one that makes final use of the value of the constant 
reference; for example, a LABEL constant reference in a GOTO statement provides 
the destination for transfer of control. The second context is one that saves 
the value of the constant reference for later use; for example, the assignment 
of the value of a LABEL constant reference to a LABEL variable or the use of a 
LABEL constant reference as an argument in a function reference.

Observe that the range of constant references is limited. Except for LABEL 
constant references, they handle only scalar values. No provision is made for 
constant references for POINTER, OFFSET, or AREA values.
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Statement Constant References

A statement constant reference can appear wherever a statement address 
value is required. The most common use of a statement constant reference is in 
a context that makes final use of the value of the reference. For a LABEL 
constant reference, this context is a GOTO statement; for an ENTRY constant 
reference, it is a CALL statement or a function reference; and for a FORMAT 
statement, it is the R format item that is used in connection with edit-directed 
stream input/output.

THE FORM OF STATEMENT CONSTANT REFERENCES

A statement constant reference has one of the following forms:

sen

scn( se )

where sen is the statement cons tan t name and se is the subscr i pt express i on. 
The statement constant name must be an identifier that has the type attribute 
LABEL, ENTRY, or FORMAT. The second form can be used only with a LABEL constant 
name. The subscript expression must yield a value that can be converted to an 
i n teger.

THE INTERPRETATION OF STATEMENT CONSTANT REFERENCES

The evaluation of a statement constant reference yields a LABEL value, an 
ENTRY value, or a FORMAT value. Such a value contains a statement desi gnator 
and an activation i ndex. The activation index has no significance except in a 
program that uses general recurs i on; it is described later, at the end of the 
section on "Procedure Invocation”.

The statement designator that is part of the value of a statement constant 
reference is defined by the label prefix that declares the identifier in the 
statement constant reference. For example, the statement constant reference 
ALPHA designates a statement that (1) has the label prefix ’ALPHA:’ and (2) is 
contained in the smallest block that contains both the given reference and a 
statement with the label prefix ’ALPHA:’.

EXAMPLES OF STATEMENT CONSTANT REFERENCES

As a simple example of the use of a statement constant reference, consider 
the following program:

Pl: PROC;
LAB: CALL SR(X);

GOTO LAB;

END;

The occurrence of ’LAB:’ at the 
label prefix for LAB. By virtue of 
and is given the address of the CALL 
LAB in the GOTO statement is a LABEL

of the CALL statement is the defining 
that prefix, LAB is declared LABEL INTERNAL 
statement as its value. The occurrence of 
constant reference.

beg i nn i ng
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As a more general example of the use of statement address constant 
references, consider:

P2: PROC;
... (Compu ta t i on #1)
CALL M3;
PUT EDIT( ... )(R(F ));

M3: PROC;
... (Computati on #2)
GOTO L(I+ 2);

L(l): ... (Computation #3)
GOTO A;

L(-l): ... (Computation #4)
GOTO A;

L( 2) :
A: ... (Computation #5)

END;
F: FORMAT( ... );

END;

In the CALL statement, M3 is an ENTRY constant reference; in the PUT statement, 
F is a FORMAT constant reference; and in the GOTO statement, L(1+2) is a LABEL 
constant reference.

The example program performs Computation #1, calls the procedure M3, and 
executes the PUT statement. When the procedure M3 is called, it performs 
Computation #2 and then proceeds as follows:

• If 1+2=1, it performs Computation #3 and Computation #5.

• If l+2=-l, it performs Computation #L and Computation #5.

• If 1+2=2, it performs Computation #5.

• If 1+2=0, execution is undefined.

• If 1+2 is not in the range -1 through 2, the SUBSCRIPTRANGE condition
occur s.

When the PUT statement is executed, a reference is made to the FORMAT statement, 
and that statement supplies the format items for the output.

EXTERNAL ENTRY CONSTANT REFERENCES

There is one case in which a label prefix is not sufficient declaration for 
a statement constant name; this case arises when an external ENTRY constant is 
defined in one external procedure and is used in another external procedure. In 
the defining procedure, the constant is declared by a label prefix as already 
described. However, in other external procedures that refer to the ENTRY 
constant, the constant name must be declared again; that is, the name may be 
declared with the EXTERNAL and ENTRY attributes by means of a DECLARE statement 
or by a CALL reference, since the PL/I compiler provides a default ENTRY typing 
of EXTERNAL if the name is not declared as an internal procedure or entry.
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If no ENTRY declaration is given for a CALL reference, however, the PL/I 
compiler generates a less efficient calling sequence for each call with 
arguments to an external entry which identifies the type and precision of each 
argument. Hence, to avoid the less efficient calling sequence, the programmer 
is advised to supply an ENTRY declaration if there are arguments.

When an ENTRY declaration is given that specifies type and precision for 
each argument, the PL/I compiler generates instructions to convert any argument 
of a different type or precision. As noted below, if the entry name is used in 
an external function reference, an ENTRY declaration is required to specify the 
type and precision of the result returned by the function.

As an example of the declaration of external ENTRY constant names, consider 
the following program:

Pl: PROC;
DCL P2 ENTRY(FLOAT,DEC( 10));
DCL P3 ENTRY(FLOAT);

CALL P2(X,Y) ;

CALL P3(Z);

END;

PROC(R,S);
DCL R FLOAT;
DCL S DEC(10);
• • •
ENTRY(Q);
DCL Q FLOAT;
• • •
END;

This program is made up of two external procedures. The declarations of P2 and 
P3 in the second external procedure are provided by label prefixes. Because 
these names are used in the first external procedure, they are declared in that 
procedure by means of DECLARE statements.

File Constant References

A file constant reference can appear wherever a file value is required. 
The most common use of a file constant reference is in the context that makes 
final use of the value of the reference; that is, a FILE option in a statement 
that performs input/output or opens or closes a file.

THE FORM OF FILE CONSTANT REFERENCES

A file constant reference has the following form:

where fen i s a file cons tan t name. A file constant name i s an 
is an identifier that is declared with the attribute FILE.

identifier that
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EXAMPLES OF FILE CONSTANT REFERENCES

As an example of 
following program:

the use f i le constant references/ consider the

P • P RO C •
DCL (ALPHA,BETA) Fl LE;

OPEN FILE(ALPHA) INPUT STREAM; 
OPEN FILE(BETA) OUTPUT PRINT STREAM;

GET FILE(ALPHA) LIST(A,B,C);

PUT FlLE(BETA) LIST(X,Y,Z);

CLOSE FlLE(ALPHA); 
CLOSE FlLE(BETA);
• • • 
END;

This program shows how the file constant references ALPHA and BETA are used to 
designate file-state blocks for an input data set and an output data set, 
respecti ve1y.

Attributes for Constant Names

The complete attribute set for named constants is given by the following 
di agram:

INTERNAL LABEL [DI MENSION( lb : ub )]

INTERNAL FORMAT

CONSTANT

INTERNAL

EXTERNAL
f i 1edes

In this di agram,

lb (lower bound) and ub (upper bound) are optiona11y-signed integers.

parmdes is a parameter descriptor and resdes is a result descriptor; 
these constructs are described later, in the section on "Procedure 
Invocat ion".

opt is an OPTIONS type for external entries as described in the 
section on "Procedure Invocation".

f j1edes is a file description; this construct is described later, in 
the sections on "Stream Input/Output" and "Record Input/Output".
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The attribute set for a LABEL or FORMAT constant name is never written in a 
program; instead, it is deduced from a label prefix. The attribute set for an 
entry constant name is written in a DECLARE statement only in an external 
procedure that uses but does not define the entry constant; otherwise, it is 
deduced from a label prefix. The attribute set for a file constant name is 
always given in a DECLARE statement.

PROGRAMMED FUNCTION REFERENCES

A programmed function reference invokes a PL/I procedure and then delivers 
the result of the execution of the procedure as the value of the reference. 
Through the use of a programmed function reference, a long and complicated 
procedure can be executed in the midst of the evaluation of an expression.

The Form of Programmed Function References

A programmed function reference has one of the following forms:

argli st

where ref is the entry reference and arg1i s t is the argumen t list. Usually, the 
entry reference is an entry constant name; however, it can also be a generic 
entry name or any reference that yields a scalar entry value. The argument list 
is a sequence of arguments separated by commas, and each argument is an 
expression. The second form is used when no arguments are required.

A generic entry name does not directly designate an ENTRY value; instead, 
it is replaced by an entry constant name during the compilation of the program. 
The declaration of the generic entry name gives a set of entry name constants. 
For each entry name constant in the declaration, some attributes for , each 
argument of the designated procedure entry point are given. Thus when a 
programmed function reference begins with a generic function name, the 
interpretation of the generic entry name is determined by the storage types of 
the arguments of the programmed function reference. An example of the use of a 
generic entry name is given in the section on ’’Procedure Invocation .
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The Interpretation of Programmed Function References

The interpretation of programmed function 
later, in the section on "Procedure Invocation", 
summarized in two steps, as follows:

references is fully described
That interpretation can be

1. Storage Type Determination. Obtain the storage type of the entry 
reference of the given programmed function reference. This storage 
type includes an ENTRY attribute and a RETURNS attribute, and these 
attributes provide information about the procedure entry point that is 
designated by the entry reference. The ENTRY attribute gives a 
storage type for each parameter of the designated procedure entry 
point; this information is used in interpreting the argument. The 
RETURNS attribute gives the storage type of the value returned by the 
designated entry point and thus gives the storage type of the given 
programmed function reference.

2 .

Step 1 of 
executed, 
eva1uated

Reference Evaluation. Determine the value of the programmed function 
reference. This requires the evaluation of the entry reference; the 
interpretation of the arguments; the activation, execution, and exit 
from the procedure; and the retrieval of the result of the procedure.

this inter pre tation is performed by the compiler before the program is 
Step 2 is performed each time the programmed function reference is 

during program execution.

Examples of Programmed Function References

As a simple example of the use of programmed function references, consider 
the following program:

P: PROC;
DCL (SYS IN,SYSPRINT) FILE;
DCL (A,B,C) FLOAT;
GET LIST(A,B);
C = F(A) + F(B);
PUT LIST(C);

F: PROC(X) RETURNS(FLOAT);
DCL X FLOAT;
I F X < 0

THEN RETURN(0);
ELSE RETURN(X);

END;
END;
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In this program, the procedure F is especially simple; its result is either zero 
or the given argument value depending on whether the argument is negative, or 
nonnegative. The important point, however, is that the definition of F is a 
separate part of the program and can be examined and modified separately.

In order to execute the example program, it is necessary to interpret the 
following operator expression:

F(A) + F(B)

In order to interpret this expression, it is necessary to know the storage type 
of the two programmed function references that appear in it. Consider the way 
in which the storage type of F(A) is determined. First, the storage type of the 
entry reference, F, is determined; it is:

ENTRY(FLOAT) RETURNS(FLOAT)

This storage type is obtained by applying the rules for the interpretation of an 
ENTRY constant reference to F; those rules are given earlier in this section. 
The storage type of F(A) is obtained from the RETURNS attribute in the storage 
type of F; it is:

FLOAT

In the same way, it can be shown that the storage type of F(B) is also FLOAT.

A second example of a programmed function reference follows. This example 
uses both a variable reference and a programmed function reference as the entry 
reference of a programmed function reference. Such usage occurs only in large 
and complicated programs, and a short example cannot be realistic; however, the 
example i s formally correct and i s used to show how the storage type of a 
complicated entry reference is determined.

p. PROC*
DCL (SYSIN,SYSPRINT) FlLE;
DCL (M,N) FIXED;
DCL X FLOAT;  „ .
DCL FV ENTRY(FIXED) RETURNS(ENTRY(FLOAT) RETURNS(FLOAT)) VARIABLE;
GET LIST(M,N,X); 
IF M = 0 THEN FV = Fl; ELSE FV = F2;
PUT LIST(FV(N)(X)) ;

Fl: PROC(A) RETURNS(ENTRY(FLOAT) RETURNS(FLOAT));
DCL A FIXED;
IF A=0 THEN RETURNCF3); ELSE RETURN(FU);
END;

F2: PROC(B) RETURNS(ENTRY(FLOAT) RETURNS(FLOAT));
DCL B FIXED;
IF B=0 THEN RETURN(FU); ELSE RETURN(F3);
END;

F3: PROC(Zl) RETURNS( FLOAT) ;
DCL Z1 FLOAT;
RETURN(SIN(Z1));
END;

FU: PROC (Z2) RETURNS (FLOAT);
DCL Z2 FLOAT;
RETURNCSIN(Z2));
END;

END;
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The central feature of the program is the interpretation of the programmed 
function reference:

FV(N)(X)

By the time this reference is evaluated, one of the ENTRY constant references Fl 
or F2 has been assigned to the ENTRY variable named FV. Thus the given 
reference is equivalent to one of the following:

F1(N)(X) (for M = 0)

F2(N)(X) (for M # 0)

The.evaluation of the programmed function reference F1(N) yields the ENTRY value 
designated by either F3 or F4, depending on whether N is zero or not. 
Similarly, the evaluation of F2(N) yields the ENTRY value designated by either 
F4 or F3, depending on whether N is zero or not. Thus, finally, the given 
reference is equivalent to one of the following:

F3(X) (for M and N both zero or both nonzero)

F4(X) (for other values of M and N)

Clearly this example could be programmed in a simpler and more efficient way, 
but it would not then illustrate the use of a non-constant entry reference.

The 
begi ns, 
from the

storage type of FV(N)(X) can be 
as follows. First, the storage 
DECLARE statement to be:

obtained before program execution 
type of the variable FV is determined

ENTRY(FIXED) RETURNS(ENTRY(FLOAT) RETURNS(FLOAT))

This storage type means that the value of FV is "an ENTRY value that designates 
a procedure entry point that has a FIXED parameter and returns an ENTRY value; 
and the latter ENTRY value designates a procedure entry point that has a FLOAT 
parameter and retuins a FLOAT value". Next, the storage type of the programmed 
function reference FV(N) is determined from the storage type of FV to be:

ENTRY(FLOAT) RETURNS(FLOAT)

This storage type means that the value of FV(N) is "an ENTRY value that 
designates a procedure entry point that has a FLOAT parameter and returns a 
FLOAi value". Finally, the storage type of the entire reference is determined 
from the storage type of FV(N) to be:

FLOAT

This storage type means, of course, that the value of FV(N)(X) is "a FLOAT 
va1ue".

BUILT-IN FUNCTION REFERENCES

A built-in function reference performs a specific calculation on its 
arguments and delivers the result as the value of the reference. For each 
built-in function, the calculation performed is part of the definition of P L/1 . 
Although a built-in function reference resembles a programmed function reference 
in some ways, there are important and fundamental differences between the two 
kinds of reference. These differences are discussed here, after the form and 
interpretation of built-in function references are given.
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A specific definition for each of the built-in functions is given in the 
next section, ’’Operations”. Each definition gives restrictions on the arguments 
and gives rules for converting the arguments, determining the storage type of 
the result, and calculating the value of the result. The section on 
’’Operations” is large, and the quickest way to find the definition of a 
particular built-in function is to look its name up in the index of this manual.

The Form of Built-in Function References

A built-in function reference has one of the following forms:

bi fname( argli st )

b i fname( )

b i fname

where b i fname is the built-in funct i on name and argli st is the argument list. 
If referenced without a parenthesized argli st, the built-in function name must 
be declared BUILTIN and must be one of the following identifiers:

ABS
ADD
ADDR
ADDREL
AFTER 
ALLOCATION

ALLOC
ATAN 
ATAND 
ATANH

BEFORE
BINARY

BIN
BIT
BOOL

CEI L 
CHARACTER

CHAR 
COLLATE 
COMPLEX

CPLX 
CONJG 
CONVERT 
COPY 
COS 
COSD 
COSH 
DATE 
DECAT 
DECIMAL

DEC

DIMENSION 
DIM

DIVIDE
DOT 
EMPTY
ERF 
ERFC 
EXP
FIXED 
FLOAT 
FLOOR
HBOUND 
HIGH 
I MAG 
I NDEX 
LBOUND 
LENGTH

LINENO 
LOG 
LOGIO 
LOG2 
LOW 
MAX 
MIN 
MOD 
MULTI PLY 
NULL 
NULLO 
OFFSET 
ONCHAR 
ONCODE 
ONFIELD 
ONFILE 
ONKEY

ONLOC 
ONSOURCE 
PAGENO 
POINTER 

PTR
PRECISION 

PREC
PROC 
REAL

REVERSE 
ROUND 
SEARCH 
SIGN
SIN 
SIND 
SINH

SIZE 
SQRT

STR I NG 
SUBSTR 
SUBSTRACT 
SUM 
TAN 
TAND 
TANH 
Tl ME 
TRANSLATE 
TRUNC 
UNSPEC 
VALI D 
VERIFY

The argument list is a sequence of expressions separated by commas. The second 
and third forms of a built-in function reference are equivalent; either can be 
used for a built-in function that requires no arguments.

The Interprefation of Built-in Function References

A programmed function reference is interpreted in two steps, as follows:

1. Storage Type Determination. Determine the target storage type for 
each argument and the storage type of the result. The rules for 
determining these storage types are given in the individual 
definitions of the built-in functions; often they depend on the 
storage types of the arguments.

2. Reference Evaluation. Evaluate each argument and convert it to the 
target storage type for the argument. Evaluate the reference as 
specified in the definition of the built-in function.

Step 1 of this interpretation is performed by the compiler before the program is 
executed. Step 2 is performed each time the built-in function reference is 
evaluated during program execution.
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Examples of Built-in Function References

As an example of a built-in function reference that handles storage types 
in a simple but quite typical way, consider the following use of the SIN 
built-in function:

DCL (Y,ALPHA) FLOAT;

Y = SIN(ALPHA);

The function reference under consideration is:

SIN(ALPHA)

The built-in function name is SIN and the argument list contains one argument, 
ALPHA.

The storage type of the argument, ALPHA, of the built-in function reference 
in the examp 1e is:

REAL FLOAT Bl NARY(27)

According to the definition of SIN in the section on ’'Operations”, the target 
s torage type is:

REAL FLOAT BlNARY(27)

Thus for this use of SIN, the argument is not converted before the calculation 
begins. Also according to the definition of SIN, the result storage type is;

REAL FLOAT BINARY(27)

Thus the storage type of the result is the same as that of the argument. When 
the assignment statement is executed, the value of ALPHA is fetched, the sine is 
calculated, and the result is returned as the value of the reference.

As an example of a more complicated built-in function 
the following use of the MAX built-in function:

reference, consider

DCL X FLOAT;
DCL A FLOAT;
DCL B* Fl XED( 35) ;
• • •
X = MAX(A,B,200);

Here, the assignment statement 
A, B, and 200 to the variable 
assignment statement requires 
result of the reference to MAX.

assigns the largest of the values designated by 
named X. A precise understanding of the 

the determination of the storage type of the

The following table gives the argument 
types for the built-in function reference:

Argument Argument Storage Type

A REAL FIXED BlNARYC27)

B REAL FIXED BINARY(35)

200 REAL FIXED DECIMAL(3)

storage types and the target storage

Target Storage Type

REAL FLOAT BlNARY(27)

REAL FLOAT BlNARYC 35)

REAL FLOAT BlNARY(10)
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Observe that the target storage types differ only in the precision attribute; 
the choice of FLOAT over FIXED and of BINARY over DECIMAL is a rule that applies 
to many built-in functions. The storage type of the result is:

REAL FLOAT BINARY(35)

Observe that the number-of-digits is the maximum of those given in the target 
storage types of the arguments.

As an example of a built-in function reference with aggregate arguments, 
consider the following use of the MAX and MIN built-in functions:

DCL 01 ALPHA(3),
02 A FLOAT,
02 B FIXED;

DCL 01 TOP,
02 A FLOAT, 
02 B FIXED;

ALPHA = MIN(MAX(0,ALPHA), TOP);

Here, the assignment statement changes the value of ALPHA where necessary so 
that its components lie in the range:

0 <_ ALPHA. A( I ) 1 TOP. A
(for I = 1, 2, and 3)

0 < ALPHA.B( I ) 1 TOP.B

When a value is changed, it is changed as little as possible; for example, a 
negative value is changed to zero.

The following table gives the argument 
types for the built-in function references:

storage types and the target storage

Target Storage TypeArgument Argument Storage Type

0 REAL F 1 XED DEC(1) 01 DIM(1:3) 
02 REAL 
02 REAL

FLOAT
F 1 XED

BlN(4), 
BlN(4)

ALPHA 01 D 1 M ( 1: 3)
02 REAL
02 REAL

FLOAT
FIXED

BlN(27), 
BlN(17)

01 DIM(1:3) 
02 REAL 
02 REAL

FLOAT
FIXED

BlN(27), 
BlN(17)

TOP 01,
02
02

REAL
REAL

FLOAT
FIXED

BlN(27), 
BlN(17)

01 D 1 M ( 1:3)
02 REAL
02 REAL

FLOAT
FIXED

B 1 N ( 2 7), 
B 1 N ( 17 )

Observe that the scalar, 0, and the structure, TOP , are converted to the
aggregate type of ALPHA.

Differences Between Built-in and Programmed Function References

The essential difference between built-in and programmed function 
references is in the way the actions performed are defined. For a built-in 
function reference, the action is defined as part of the PL/I language, and a 
given built-in function name means the same thing wherever it is used. In 
contrast, for a programmed function reference, the action is defined as part of 
a program, and a given programmed function name can mean different things under 
different circumstances.
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In addition to this essential difference, there are several other important 
differences between built-in and programmed function references. These 
d i fferences are:

1. A built-in function reference must begin with a built-in function 
name; therefore, the selection of the built-in function is made when 
the program is written. In contrast, a programmed function reference 
can, when necessary, begin with an entry variable reference or an 
entry programmed function reference; therefore, the selection of the 
programmed function can be made as part of each evaluation of the 
programmed function reference, and can change from one evaluation to 
the next. A built-in function name cannot be assigned as the value of 
an entry var i ab1e.

2. A specific argument of a specific built-in function reference can have 
any of several storage types without undergoing conversion of its 
storage type. In contrast, unless a generic function name is used, an 
argument of a programmed function reference must have a specific 
storage type (except for variations in extents) in order to escape 
convers i on.

3. The result of a built-in function reference has a storage type that is 
derived from the storage type of its arguments. In contrast, the 
result of a programmed function reference is independent of the 
storage types of its arguments (except, perhaps for extents) and is 
determined by the definition of the function.

4. On a less important level, the parentheses around the argument list 
can be omitted from a built-in function reference that has no 
arguments. In contrast, the parentheses must be given with a 
programmed function reference even if there are no arguments.

5. Finally, a built-in function reference is evaluated at a relatively 
low cost. In contrast, the evaluation of a programmed function 
reference is relatively expensive, even when the invoked procedure 
consists of only a few simple statements.

This list shows that the differences between built-in 
references are more important than the similarities.

and programmed function

OPERATOR EXPRESSIONS

Like a built-in function reference, an operator expression performs a 
specific calculation on its arguments and delivers the result as the value of 
the expression. For each operator, the calculation performed is part of the 
definition of PL/I. The only difference between operators and built-in function 
references is a difference in form. An operator expression can be thought of as 
a built-in operation that, because of its frequency of use, is represented by 
means of a special notation, using an operator, rather than by means of the less 
compact built-in function reference.

A specific definition of each of the operators is given in the next 
section, "Operations". Just as for built-in functions, each definition of an 
operator gives restrictions on the arguments and gives rules for calculating the 
value of the result. A quick way to find the definition of a particular 
operator is to look the operator up in the index of this manual.
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The Form of Operator Expressions

An operator expression has one of the following forms:

( argl i nop arg2 ) argl i nop arg2

( preop argl ) preop argl

where argl and arg2 are the operands (also called arguments) 
i nop is the infix opera tor, and preop is the prefix operator, 
must be one of the following:

of the operator,
An infix operator

A<

A prefix operator must be one of the following:

For both the infix operator and prefix operator a parenthesized and an 
unparenthesized form is given. It is always correct to use the parenthesized 
form of an operator expression. The unparenthesized form can be used when the 
priority rules, described later in this discussion of operator expressions, 
provide the interpretation that the programmer wants.

The Interpretation of Operator Expressions

An operator expression is interpreted 
built-in function reference, as follows:

in the same two steps that apply to a

1. Storage Type Determination. Determine the target storage type for 
each operand and the storage type of the result. The rules for 
determining these storage types are given in the individual 
definitions of the operators; often they depend on the storage types 
of the operands.

2. Reference Evaluation. Evaluate each operand and convert it to the 
target storage type for the operand. Evaluate the reference as 
specified in the definition of the operator.

Step 1 of this interpretation is performed by the compiler before the program is 
executed. Step 2 is performed each time the operator expression is evaluated 
during program execution.
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The Operator Priority Ru1es

Two operators are on the same express i on 1 eve 1 if they appear in the same 
expression and the only parentheses that appear between them are matched pairs. 
When there are several operators on the same expression level, the following 
table determines the order in which the operators are evaluated:

Order within PriorityOpe ra tor s

1 owes t

When two operators appear on the same expression level, the operator with higher 
priority is evaluated first. If the operators have the same priority, then they 
are evaluated in left to right or in right to left order, depending on the entry 
in the third column of the table. These are the operator pr i or i ty rules.

As an example of the application of
the following expression:

the operator priority ru1es, consider

4* ( A-(B/C)* *2 + D)

There are three expression levels in this expression. One of them has just one 
operator, and another also has just one operator, '/’. However, the 
remaining expression level contains three operators, and ’ + ’. The 
rules are applied as follows;

• The operator with the highest priority is therefore, this
operator is evaluated before the other operators on the same 
expression level.

• The remaining two operators, and ’+’, both have the same priority. 
According to the table, they are evaluated from left to right; 
therefore, f-! is evaluated before ’+’.

According to this analysis, the example is equivalent to the following 
express i on:

4*((A-((B/C)**2))+D)

This expression makes the required order of evaluation explicit.
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In some cases, the results of the operator priority rules are consistent 
with well-known conventions of mathematical notation. In other cases, the 
results do not correspond in any obvious way to familiar notation. Some 
examples of the latter are:

G i ven

A/B/C

A**B**C

-A* * B

A*-B

A = B=C

Egu i va1en t 

(A/B)/C 

A* *(B* * C) 

-(A**B)

A*(-B) 

(A=B)= C

In each of these cases it is suggested that the given expression be avoided and 
that, instead, the parenthesized equivalent be used. Parentheses should not be 
omitted except where the interpretation will be obvious to everyone who must 
read the program.

The operator priority rules do not fully determine the order in which 
operators in an expression are evaluated; it applies only to operators that are 
on the same expression level. Consider, for example:

(A+B)*(C+D)

In this expression there are three expression levels, and each contains only one 
operator; therefore, the operator priority rules say nothing about this 
example. From the fact that the ' + ’ operators are contained in the operands of 
the it can be concluded that the ’+’ operators are evaluated first. 
However, the order in which the two ’ + ’ operators are evaluated is not defined.

Examples of Operator Expressions

As an example of the use of operator expressions, consider the fol lowing 
program fragment;

DCL (Y,A,B,C,D) FLOAT; 
• • •
Y = A*(B-C)+D;

According to the priority rules, the right-hand side of the assignment statement 
i s equi valent to:

(A*(B-C))+D

The right-hand side is made up of three operator expressions.

According to the definition of the 1 * ’ , and + operators, the target
storage type for all these operands is:

REAL FLOAT BINARY(27)
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When the definitions of the operators are applied to 
out that the target storage type for every operand 
for every operator is also:

REAL FLOAT BINARY(27)

This simplicity with respect 
floating-point calculations.

to storage types

this expression, it turns 
and the result storage type

i s typi ca1 of scalar,

As a more complicated example of the case of operator expressions, 
consi der:

DCL I FIXED;

In this example, the assignment statement increases the value of I by one. The 
calculation is simple, but the determination of the storage type of the 
right-hand-side expressions is not.

The following table gives the operand storage types and the 
types as determined by the definition of the ’ + ’ operator.

target storage

Operand Operand Storage Type

I REAL FIXED BINARYU7)

1 REAL FIXED DECIMAL(l)

The storage type of the result is:

REAL FIXED BINARYC18)

Observe that the precision of the target and 
any value of X that can arise.

Target Storage Type

REAL FIXED BINARYC17)

REAL FIXED BINARY(4)

result storage type accommodates
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SECTION IX

OPERATIONS

The operations of PL/I are invoked by the operator $ and the bu i1t ~ i n 
funct ions. It is the operations that determine the computational foundation of 
PL/I. There are well over a hundred operations, and they are described here 
under the following headings:

Arithmetic Operations. These operations perform the fundamental 
operations of arithmetic. They range from such elementary operations 
as addition and subtraction to less well known operations such as the 
modulus and the conjugate.

Mathematical Operations. These are the transcendental functions of 
applied mathematics, including the exponential and logarithmic 
functions and the standard trigonometric functions.

String Operat i ons. These operations manipulate 
range from the fundamental concatenate operator 
to advanced functions for text processing.

string values. They
and SUBSTRING function

Address and Area Operations, 
values and area values, 
programming applications.

These funct i ons man i pu1 a te
They are rarely used outside of

address 
advanced

Array Operations. These operations are especially designed to operate 
on array arguments.

Conversion Operations. These operations are used to convert a value 
of one storage type to another.

Special Operations. These operations are intimately related to the 
PL/I processor; they access system variables or depend on the details 
of program execution.

The definitions given here show the result of a 
given argument values. The definitions do not 
operation. The way in which operations fit into the 
described in the preceding section on ’’Expressions’'.

program i sa

given operation applied 
discuss the context of

con text

Following this introduction, this section gives general rules and 
conventions that apply to all of the definitions of operations. The. section 
then continues through seven subsections, each of which begins by giving the 
conventions that apply to that subsection. In many cases, a complete 
understanding of a given operation requires familiarity with bo th the general 
conventions and the conventions for the subsection in which the given operation 
is def i ned.
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GENERAL REMARKS

Remarks that apply to all of the definitions in this section are given 
here. They apply to argument evaluation, nonstandard operations, and the 
conventions for the presentation of examples.

Argument Evaluation 

The evaluation 
function reference 
"Expressions". Three

of the arguments of an operator expression or a built-in 
s described in detail in the preceding section, 
important points are stated briefly here:

When an operator expression or a built-in function reference has 
several arguments, the order in which the arguments are evaluated is 
not defined. The processor may, for example, begin the evaluation of 
the first argument, perform the evaluation of the second argument, and 
then complete the evaluation of the first argument.

Except where the definition of an operation includes a restriction to 
the contrary, one or more of the arguments can be an aggregate. If 
the arguments of the operation have different aggregate types, then at 
least one of the arguments must have an aggregate type that is a 
suitable target for the conversion of the other arguments; before the 
operation is performed, all the arguments are converted to this 
aggregate type according to the rules given earlier, in the section on 
"Value Conversion". When the arguments all have the same aggregate 
type (either by conversion or because they were given that way), the 
operation is applied to cor responding scalar components of the 
arguments just as it would be applied to scalar arguments. The result 
has the same aggregate type as the arguments. Examples of operations 
on aggregate arguments are given earlier, in the section on 
"Express i ons" .

Standard PL/I allows implicit conversion between any computational 
data types. However, GCOS PL/I, as a matter of policy, discourages 
implicit conversion between the following general types of values:

ar i thme t i c 
character string 
bit string

The GCOS PL/I compiler prints a warning message whenever implicit 
conversion between these general types is required by context. 
Therefore, the definitions given in this section specify that a given 
argument must be one of these three major types. When it is 
necessary, for example, to use a character-string argument for an 
operation that requires an arithmetic value, one of the functions 
described under "Conversion Operations" in this section should be used 
to perform the conversion explicitly.
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Nonstandard Operations

The GCOS implementation of PL/I includes certain operations that are not 
part of Standard PL/I. The heading of the definition of each such operation 
ends with an asteriskC*). There are two kinds of nonstandard functions. The 
first kind is an extension of PL/I and is designed to make programming easier; 
the ’’Hyperbolic Functions" are examples. This kind of operation can be 
eliminated quite easily in the event a program must be reduced to Standard PL/I. 
The second kind of nonstandard function operation depends on the way GCOS PL/I 
is implemented; the "Implementation-Dependent Address Functions" are examples. 
A program that uses these operations must be substantially revised to reduce it 
to the Standard.

Conventions for Examples

Many examples are given in this section. In each example, the values of 
the arguments and the result are given as constants whose data types are correct 
for the example. Consider the following example of the plus-sign operator:

( 006 . ) + (-2.00) = 000U.00

This example not only shows that the value of six plus minus two is four, but 
also shows that a DEC(3) value plus a DEC(3,2) value yields a DEC(6,2) result. 
Often the value of the result is obvious and the purpose of the example is to 
show the storage type of the result.

Each example consists of an operator expression or a function reference, 
followed by an equals sign, followed by a result. (The example given in the 
previous paragraph has this form.) The equals sign means "yields the result"; 
it is not used as a PL/l symbol.

For certain argument values, the evaluation of an operator expression or a 
function reference causes a condition to occur; in that case, the condition 
name, enclosed in parentheses, is given instead of the result. An example is:

(2.0000E0) / (0.0000E0) = (ZERODIVIDE)

This example shows that division by zero causes the ZERODIVIDE condition to 
occu r.

In many of the examples 
BINARY arguments are shown, 
it is easier to understand, 
fact, DECIMAL values are 
programmi ng.

that have arithmetic arguments, DECIMAL rather than
The DECIMAL base is used for these examples because

The use of DECIMAL base is not an endorsement; in 
rarely used in practice outside of business

THE ARITHMETIC OPERATIONS

The arithmetic operations manipulate arithmetic values in a fundamental and 
relatively general way. A single operation, such as the ’+’ operator, can have 
many interpretations depending on the storage types of its arguments. The 
arithmetic operations contrast with the mathematical operations, described 
later, which perform transcendental operations and always produce a 
floating-point result.
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The rules for determining the data type of the result of an arithmetic operation 
are sometimes complicated. Much of the complexity arises in determining the 
scale-factor of a FIXED result. In many programming applications, it is 
possible to avoid FIXED data that has a nonzero scale factor; that is, 
fixed-point data can be confined to integers. In these applications, the rules 
become simpler.

Conventions for Definitions

The arithmetic operations defined here have some points in common, and 
certain conventions and general rules apply to all of the definitions.

ARGUMENTS

As the first step in the interpretation of an operation, the storage types 
are checked. Each arithmetic operation requires arguments that yield arithmetic 
values; in some cases, an argument is further required to be either REAL or 
COMPLEX. These requirements are indicated by the use of the following 
convent ions:

X, XI, X2 . . . The value of the argument must be ar i thme t i c

Rz Rl, R2 . . . The va 1 ue of the argument must be REAL ar i thme t ic

Z, Zl, Z2 . . . The va 1 ue of the argument must be COMPLEX ar i thmet i c

For example, the definition of the TRUNC function requires that it have the 
form:

TRUNC(R)

Therefore, the use of an argument that does not yield a REAL arithmetic value is 
i nva1 id.
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RESULTS

Each definition gives the precision attribute of the result without regard 
for the capacity of a particular implementation of PL/I. For each 
implementation of PL/I, the defined precision must be limited to the capacity of 
the host computer. The defined precision is modified to a GCOS precision as 
fol 1ows:

Def i ned GCOS

FIXED BIN(p,q) FIXED BIN(MIN(MAX(P,1),71),MIN(MAX(q,-128),127))

FLOAT BIN(p) FLOAT B I N (MI N (MAX ( p, 1), 6 3))

FIXED DEC(p,q) FIXED DEC(MIN(MAX(p,1),59),MIN(MAX(q,-128),127))

FLOAT DEC(p) FLOAT DEC(MIN(MAX(p,1),59))

These rules simply require that the precision of the result of an operation lies 
within the ranges for the number-of-digits and scale-factor that were given 
earlier, in the section on "Value Storage".

THE COMMON DATA ATTRIBUTES

Many of the definitions that follow refer to the common data attr i bu tes of 
the arguments. These attributes are as follows:

The mode attribute is COMPLEX if the modes of the arguments differ; 
otherwise, it is the common mode of all the arguments.

The scale attribute is FLOAT if the scales of the arguments differ; 
otherwise, it is the common scale of all the arguments.

• The base attribute is BINARY if the bases of the arguments differ; 
otherwise, it is the common base of all the arguments.

For example, suppose that an operation has two arguments with the following data 
types:

DEC( 10)REAL FIXED

Bl N(27)REAL FLOAT

Then the common data

BINREAL FLOAT

E1 emen tary Operations

There are five operators and four functions that are used to perform the 
elementary operations of arithmetic. They are:

The plus and minus operators. Each can be used either 
operator to supply the sign of an expression or as an 
to add or subtract one expression from another.

as a prefix 
infix operator
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The multiplication, division, and exponentiation operators. The 
exponentiation operator accepts non-integer exponents.

The ADD, SUBTRACT, MULTIPLY, and DIVIDE functions, which are used in 
fixed-point calculations when it is necessary to specify the precision 
of the result.

These functions are of general interest.

THE PREFIX SIGN OPERATORS

Parenthesized operator expressions for the prefix sign operators have the 
forms:

The result is the unchanged value or the negated value, respectively, of X. The 
storage type of the result is the same as that of X. Examples are:

+ (+0435.241) = +0435.241
- (+0435.241) = -0435.241

+ (-2.8192E0) = -2.8192E0
- (-2.8192E0) = +2.8192E0

+ ( + 1.3000E0-17.891E0I) = +1.3000E0-17.891E0I
- (+1.3000E0-17.891E0I) = -1.3000E0+17.891E0I

THE INFIX SIGN OPERATORS

Parenthesized operator expressions for the infix sign operators have the 
forms:

( XI + X2 )
( XI - X2 )

The result is the sum or d i fference, respectively, of the operands. Before the 
operation is performed, the operands are converted to the common data 
attr i bu tes, defined earlier. The result has the same data type as the converted 
operands except:

If the converted operands are FLOAT with precisions (pl) and (p2), 
then the result has the precision:

( MAX(pl,p2) )

If the converted operands are FIXED with precisions (pl,ql) and 
(p2,q2), then the result has the precision:

( MAX(pl-q1,p2-q2)+MAX(q1,q2)+1, MAX(ql,q2) )

Observe that a FIXED result has a digit position for each digit 
position in either operand and, further, an extra, high-order digit 
pos i t i on.
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Examples are:

(2.000E0)
(2.000E0)
(2.000E0)
(2.000E0)

+ (2.0E0) = 4.000E0
+ (2) = 4.000E0
+ (00010.OB) = 100.00000000000E0B
+ (2+01) = 4.000E0+0.000E0I

( 5555) + ( . 333) = 05555.333
(5555) + (.00023) = 05555.00023

In the last example, each slashed zero is a filler zero; therefore, the second 
argument has precision (2,5), not (5,5).

THE MULTIPLICATION OPERATOR

A parenthesized operator expression for the multiplication operator has the
form:

( XI * X2 )

The result is the product of the operands. Before the operation is performed, 
the operands are converted to the common da ta a t tr i bu tes defined earlier. The 
result has the same data type as the converted operands except:

If the converted operands are FLOAT with precisions (pl) and (p2), 
then the result has the precision:

( MAX(pl,p2) )

If the converted operands are FIXED with precisions (pl,ql) and 
(p2,q2), then the result has the precision:

( pl+p2+l, ql+q2 )

Observe that a FIXED result has more digits than either operand; thus 
multiplications tend to increase the precision of an expression.

Examples are:

(2.000E0) * (-3.0E0) = -6.000E0 

(002.00) * (-003.00) = -0000006.0000 

(002.00) * (-003.00) * (004.00) = -00000000024.000000
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THE DIVISION OPERATOR

A parenthesized operator expression for the division operator has the form:

( XI / X2 )

The result is the quotient of XI by X2. If X2 is zero, then the ZERODIVIDE 
condition occurs, and any attempt to resume execution at the division operation 
is invalid. Before the operation is performed, the operands are converted to 
the common data a 11r i bu tes defined earlier. The result has the same data type 
as the converted operand except:

If the converted operands are FLOAT with precision (pl) and (p2), then 
the result has the precision:

( MAX(pl,p2) )

If the converted operands are FIXED with precisions (pl,ql) and 
(p2,q2), respectively, then the result has the precision:

( N, N~pl+ql~q2 )

where N is the maximum number-of-digits, 59 for DECIMAL and 71 for 
BINARY. Observe that a FIXED result always is of maximum size.

The precision of a FIXED result is of maximum size because PL/I cannot make a 
better choice on the basis of available information. In virtually all cases, 
the programmer will have better information; for fixed-point division, he should 
use the DIVIDE function, which allows specification of the correct result 
precision. Examples of the division operator are:

(6.000E0) / (-3.0E0) = -2.000E0

1/3 = 0.333... 3 ( 59 digi ts)

2 + 1/3 = 02.333... 3 ( 60 digits) = 2.333... 3 ( 59 digits)
22+1/3 = 22.333...3 (60 digits) = (SIZE)

The fact that the small and useful expression *22+1/3’ cannot be used without
producing an occurrence of the SIZE condition shows the weakness of the 
fixed-point divide operation. The expression could be written as:

22+DIVIDE(1,3,10,10) = 022.3333333333
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THE EXPONENTIATION OPERATOR

A parenthesized operator expression for the exponentiation operator has the 
form:

(XI ** X2)

The result is XI to the power X2. For some values, the mathematical value of 
the operator is indeterminate; for these values the PL/I operator is defined as 
fol 1ows:

When XI is zero, the function is defined as follows: 

if X2 is REAL and X2>0 or
X2 is COMPLEX and REAL(X2)>0 and IMAG(X2)=0 

then 0**X2 = 0; 

otherwise, the ERROR condition occurs.

When X2 is zero, the function is defined as follows: 

if XIA = o 

then Xl**0 = 1; 

otherwise, the ERROR condition occurs.

When XI is REAL and negative, the function is defined as follows: 

if X2 is a decimal integer constant (without a sign), 

then (-X1)**X2 = ((-1)**X2)*(X1**X2); 

otherwise, the ERROR condition occurs.

This restriction excludes a complex 
observe that if X2 is supplied in 
ERROR condition occurs (even if its

value for a REAL result; 
any way other than a constant, 
value is a positive integer).

but 
the

Before the operation is performed, the operands are converted to the common data 
attr i butes defined earlier; however, for exponentiation the following exception 
app1i es:

If the second argument, the exponent, has the original data type:

REAL FIXED base(p2,0)

then the adjusted 
attributes REAL and 
operand.

data type for the second operand retains the 
FIXED regardless of the attributes of the first

This exception is perceptible only when a conversion error can occur; otherwise, 
i t can be ignored.
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THE ADD, SUBTRACT, MULTIPLY, AND DIVIDE FUNCTIONS

References to these functions have the forms:

ADD(X1,X2,P)
SUBTRACT(X1,X2,P) 
MULTIPLY(XI,X2,P) 
DI VIDE(X1,X2,P)

ADD(X1,X2, P,Q)
SUBTRACT(X1,X2,P,Q) 
MULT IPLY(XI,X2,P,Q) 
DI VIDE(X1,X2,P,Q)

where P and Q cannot be general expressions but must instead be given as decimal 
integer constants (Q can be signed). These functions are equivalent to the 
corresponding operators in all respects but one:

The precision of the result of each of these functions 
explicitly by P (number of digits) and Q (scaling factor).

is g i ven

If the result is FIXED and Q is not given, 
is FLOAT and Q i s given, then the reference

then Q=0 is assumed, 
s i nvalid.

If the result

Comparison Operations

There are eight operators and two functions that are used to compare 
arithmetic values. They are:

The relational operators, including 
operators. Only the application of 
values is described here.

=’, ’<’, and six similar
these operators to arithmetic

The MIN and MAX functions, which yield the smallest or largest member, 
respectively, of a given list of arithmetic values.

These functions are of general interest.

THE RELATIONAL OPERATORS FOR ARITHMETIC VALUES

A parenthesized expression for a relational operator has the form:

( XI op X2 )

where the operator, .02, is one of the following:

( i s equa1 to )
( is less than )
( is greater than )
( is less than or equal to )
( is greater than or equal to )
( is not equal to )
( is not less than )
( is not greater than )
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The arguments must be REAL unless the operator is ’ = ’ or ,A = I. The relational
operators can apply to many types of values, as follows:

If either operand yields an arithmetic value or a character string 
declared with a numeric picture, then the expression is an ar i thmet i c 
CQmpar ison and is described here.

If both operands yield string values and neither is declared with a 
numeric picture, then the expression is a string compar i son and is 
described later in this section under ’’The Relational Operators for 
String Values”.

If both operands yield address values, then the expression is an 
.gid, d re s 5 compar i son and is described later in this section under "The 
Relational Operators for Address Values”.

The result of a comparison expression is ”1”B or "0”B depending on whether 
the comparison is true or false. The arguments are converted to the common data 
attr i butes. The result has storage type BIT(l) NONVARYING. Examples are:

+015.03 = +15.0300 = ”1”B
+015.03 < +15.0300 = "0”B
+015.03 <= +15.0300 = ”1"B

+15.030E0
+15.030E0
+15.030E0

+15.03 = ”1”B 
+15.031 = ”1”B 
+15.031 = "0”B

THE MIN AND MAX FUNCTIONS

References to these functions have the forms:

MIN(R1,R2,... )
MAX(R1,R2,.. . )

where the arguments must be REAL and where each function can have any number of 
arguments, provided it has more than one argument. The result is the 
mini mum va1ue or the maximum value, respectively, in the set of values given by 
the arguments. The arguments must yield REAL values; these values are converted 
to the common data attributes defined earlier in this section. The result has 
the storage type of the converted arguments except:

If the converted arguments, Rl, R2, and so on, are FLOAT and have 
precisions (pl), (p2), and so on, then the precision of the result is:

( MAX(pl,p2,...) )

If the converted arguments, Rl, R2, and so on, are FIXED and have 
precisions (pl,ql), (p2,q2), and so on, the precision of the result 
i s:

( MAX(pl-q1,p2-q2,...)+MAX(ql,q2,....),MAX(ql,q2,....) ) 
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These expressions provide the precision that is necessary to accommodate any 
argument without loss of digits. Examples are:

MIN(2.000E0z-000.5z11.1000000E0) = -5.00000000E-1
MAX(-3,99,99.05, 00.013) = 99.050

Truncating Functions

There are five functions that change a value by discarding digits from a 
representation of the value. They are:

• The TRUNC, FLOOR, and CEIL functions, which use three different rules 
for discarding all fractional digits.

• The ROUND function, which discards any sequence of low order digits by 
round i ng.

• The MOD function, which, in one form of usage, discards any sequence 
of high order digits.

These functions are of general interest.

THE TRUNC, FLOOR, AND CEIL FUNCTIONS

References to these functions have the forms:

TRUNC(R)
FLOOR(R)
CEIL(R)

where the argument must be 
truncation, the floor, and the 
discards the fractional part 
resu1t.

REAL. The results of these functions are the 
ceiling, respectively, of R. Each function 

of its argument to produce an integer-va1ued REAL

If R is an integer:

TRUNC(R) = R

FLOOR(R) = R

CEIL(R) = R

If R is not an i nteger:

TRUNC(R) is the result of discarding the fractional digits of R

FLOOR(R) is the next integer below R

CEIL(R) is the next integer above R
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The result has the storage type of the argument except that, for a FIXED 
argument, the precision (p,q) becomes

(MAX(p-q+lz1),0)

That is, a FIXED result is an integer with an added 
of the functions are:

h i gh-order digit. Examples

TRUNC(R)

1.782E0 
001 
-9.56 
-.0003

1.000E0 
0001 
-09.
+ 0.

FLOQR(R)

1.000E0
0001
-10.
-1.

CEIL(R)

2.000E0 
0001 
-09.
+ 0.

Observe that FLOORC-9.56) makes use of the added high-order digit of the result.

THE ROUND FUNCTION

A reference to the function has the form:

ROUND(X,Q)

where Q cannot be a general expression but must instead be given as an 
optionally signed decimal integer. The result has the same mode as X and is a 
round i ng of the value of X. Rounding is defined as follows:

When a value is rounded to n digits, the digits after the jnth digit 
are dropped and the .nth digit is increased by one if the (n+JL) th digit 
is 5 or greater (for decimal) or 1 (for binary).

When X is REAL, the result of the function is defined as follows:

• If X is FLOAT, Q must be greater than 0 and the mantissa is rounded to 
Q digits.

If X is FIXED, it is rounded to a value that has Q fractional digits.

The result has the same storage type as X except that

• If X is FLOAT, the precision of the result is (Q).

If X is FIXED with precision (p,q), the precision of the result is

(MAX(l,p-q+l+Q),Q)

Thus a high-order digit is added in case the rounding propagates to a 
new order of magnitude.
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Examples for floating-point are:

R0UND(-183.629 E6,U ) = -183.6E6
R0UND(-183.629E6,5) = -183.63E6
ROUND(-183.629E6,6) = -183.629E6
ROUND(-111010.11IE3Bz7) = -111011.0E3B

Observe that neither the exponent of the value nor the point in the mantissa 
affect the rounding.

Examples for fixed-point are:

ROUND(-18 3.629z 2) 
ROUND(-183.629z-1) 
ROUND(-18 3 . 629,-5 )

= -0183.63
= -0180. (FIXED DEC(3,-D)
= +000000. (FIXED DEC(l,-5))

In these examples, a slashed zero 
formula for the precision gives:

is a filler zero. In the last example, the

(p-q+l+Q,Q) = (6-3+l-5,-5) = (-1,-5)

However, the number-of-digits must be 
(1,-5). Observe that the position of the 
fixed values.

greater than zero, so the precision is 
point does affect the rounding of

For COMPLEX values, the function is defined by

ROUND(R1 + R2*11,Q) = ROUND(R1,Q) + ROUND(R2,Q)* 11

For example,

ROUND( 21 . 56 + 06 . 211, 0) = 022 .+006. I

THE MOD FUNCTION

A reference to the function has the form:

MOD(R1,R2)

where the arguments must be REAL. The result is REAL and is R1 modu 1 us. R2: that 
i s,

• If R2 A= 0, THEN MOD(R1,R2) = R1 - R 2* F LOOR ( R1/R 2 )

• If R2 = 0, THEN MOD(R1,R2) = R1
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The arguments must yield REAL values; 
data attributes, defined earlier. The 
converted arguments, except:

these values are converted to the common 
result has the storage type of the

If the converted arguments are FLOAT with precisions (pl) and (p2), 
respectively, then the result has the precision:

(MAX(pl,p2))

If the converted arguments are FIXED and have precisions 
(p2,q2), respectively, then the result has precision:

(pl,q1) and

(p2-q2+MAX(q1,q2),MAX(q1,q2))

Thus the result has as many integer digits as R2 
digits for either R1 or R2.

and enough fractional

When both R1 and
conventional integer

R2 are 
division

positive, the modulus is 
of R1 by R2. For example,

the rema i nder of the

MOD(42,5) = 2

M0D(129.2867,25.0) = OU.2867

MOD(129.2867E0,25.0E0) = 004.2867E0

MOD(182.00E0,3) = 002.00E0

The storage types for these examples are

Converted Arguments Resu1t

FIXED DEC(2,0), FIXED DEC(l,0) FIXED DEC(l,0)
FIXED DEC(7,4), FIXED DEC(3,1) FIXED DEC(6,4)
FLOAT DEC(7), FLOAT DEC(3) FLOAT DEC(7)
FLOAT DEC(5), FLOAT DEC(5) FLOAT DEC(5)

When R1 or R2 is negative, the notion of a remainder is not 
behavior of the function is less obvious. Consider 
combinations of signs:

well-defined, so the 
the four poss i b1e

MOD(42,5) = 2
MOD(42,-5) = -3
MOD(-42,5) = 3
MOD(-42,-5) = -2

(FLOORC42/5 = 8)) 
(FLOOR(42/-5 = -9)) 
(FLOORC-42/5 = -9) )
(FLOOR(-42/-5 = 8))

When R1 is positive and R2 
end of a DECIMAL value until

= 10**n, the function 
R1<R2. For example:

di sea rds digits from the

MOD(231.34,100) = 031.34
MOD(231.34,1) =0.34
M0D( 231 . 34,. 1) = . 04
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Similarly, for BINARY values:

MOD(111110.110B,1000B) = 0110.HOB
MOD(111110.110B,.IB) = .010B

Observe that the use of the MOD function for truncation does not work when R1 is 
negati ve. That i s,

MOD(-231.34,1) = 0.66

Sign-Manipulation Functions

There are two functions that manipulate the sign of an arithmetic variable. 
They are

The ABS function, which sets the sign of a real number to plus and 
forms the modulus of a complex number.

The SIGN function, which yields a value that is +1 or -1 depending on 
the sign of the argument.

These functions are of general interest.

THE ABS FUNCTION

A reference to the function has the form:

ABS(X)

The result is the absolute value of X. For a REAL argument, the result has the 
same storage type as the converted argument. Examples are:

ABS(-13.284) = +13.284
ABSC+0019.8) = +0019.8
ABS(-3.0000E2) = +3.0000E2
ABS(-63.000) = +63.000

For COMPLEX values, the function is defined by:

ABS(R1 + R2*11) = SQRT(R1**2 + R2**2)

where SQRT is the square root function defined later in this section. The 
result has the same data type as the COMPLEX argument except that the mode is 
REAL and, for a FIXED argument, the precision (p,q) becomes (p+l,q).
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Consider the function reference:

ABS(+ 8.00 + 9.00 I) = +12.04

Observe that the result value in this example makes use of the added digit in 
the result. Other examples are:

ABS(-003.00 + 003.00 I) = +0004.24
ABS(+20.200E0+.80000E0I) = +20.216E0
ABSC-63.000 + 00.0001 ) = +063.000

Compare the last example to the last example for REAL arguments: 
the same but the number-of-digits is different.

the values are

THE SIGN FUNCTION

A reference to the function has the form:

SIGN(R)

where the argument must be 
whether R is positive, zero, or 
Examples are:

REAL. The 
negati ve.

result is +1, 0, or -1 depending on 
The result is a 17-bit integer.

SI GN(-019.32) 
SIGN(+8.23E2) 
SIGN(+0000.0)

(as a REAL FIXED BlN(17) value) 
(as a REAL FIXED BlN(17) value) 
(as a REAL FIXED BlN(17) value)

Observe that, if R is FLOAT:

R = SIGN(R)*ABS(R )

However, if R is not FLOAT the two sides of this equation agree in value but not 
in data type.

Complex Arithmetic Functions

There are three functions that are used to manipulate the real and 
imaginary parts of a COMPLEX value. They are:

• The REAL and I MAG functions, which yield the real parts of a complex 
value. These functions can also be used as pseudo-variables, as 
described in the section on "Value Assignment".

• The COMPLEX function, which yields a complex value from given real 
parts.

• The CONJG function, which yields the conjugate of a given complex 
value.
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These functions are used only in computations in complex arithmetic.

THE REAL AND I MAG FUNCTIONS FOR ARITHMETIC

References to these functions have the form:

REAL(Z)
IMAG(Z)

where the argument must be COMPLEX. The result is the rea1 part or i magi nary 
part, respectively, of Z. The result has the same storage type as the argument 
except the result is REAL. For example:

REAL(-23041.E-2+00519.Ell) = -23041.E-2
I MAG(-2 3041 .E-2 + 00519.Ell ) = +00519 .El

The use of these functions for conversion is described later in this section, 
under ’’Conversion Operations”.

The pseudo-variables named REAL and I MAG are described later, in the 
section on ’’Value Assignment”.

THE COMPLEX FUNCTION

A reference to this function has the form:

COMPLEXCR1,R2)

where the arguments must be REAL. The result is a complex value whose real part 
is the value of R1 and whose imaginary part is the value of R2. Before 
interpretation of the function, R1 and R2 are converted to arithmetic values of 
the common data a 11 r i bu te s defined earlier. The result has the same storage 
type as the converted arguments except that the result is COMPLEX. For example:

COMP LEX(-2 3041 .E-2,+0051 .El) = -2 30 41.E-2 + 00519 .Ell 
COMPLEXC-230 4 IE-2, 0) = -23041.E-2 + 00000.E0I

COMP LEX( 0,+00519 .E1) = +00000 .E0 + 00519 .E11

COMPLEXC16,”1011"B) = 0...010000B+0...01011BI (71 digits each)
COMPLEXC16,”23041.E-2”) = 0 . .. 016 + 0... 230 I (59 digits each)
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THE CONJG FUNCTION

A reference to the function has the form:

CONJG(Z)

where the argument must be COMPLEX. The result is the conj uga te of Z, that i s:

CONJG(R1 + R2*11) = R1-R2+1I

The result has the same storage type as the argument. For example:

CONJG(-05.000 + 02.000 I) = -05.000-0 2.0001
CONJG(+2.312E0-.U231E0I) = +2.312E0+.U23IE0 I 
CONJG(+0002+0000 I) = +0002 + 00001

MATHEMATICAL OPERATIONS

The functions described here always produce floating-point results. These 
functions contrast with the arithmetic functions, which produce fixed-point 
results for some arguments and floating-point results for others.

These functions are called "mathematical’' because they are usually required 
only in mathematical, scientific, and engineering applications of PL/I. They 
are all transcenden ta1 functions and cannot, therefore, be defined in terms of a 
single expression using the basic arithmetic operations.

Conventions for Definitions

The functions defined here have many points in common. The data types of 
arguments and results are handled in a uniform way, and the same methods are 
applied to the calculation of the result value. Therefore, the following 
general conventions can be applied to all of the definitions.

ARGUMENTS

All of the functions operate on FLOAT arguments. If an argument is FIXED, 
then its value is converted to a FLOAT target whose number-of-digits is the same 
as that of the given argument. For example:

Argument

REAL FIXED BIN(30,5)
COMPLEX FIXED DEC(10,0)
COMPLEX FIXED BlN(70,0)

Target for Conversion

REAL FLOAT BIN(30)
COMPLEX FLOAT DEC(10)
COMPLEX FLOAT BIN(63)

The last example shows that the number-of-digits is not allowed to exceed the 
maximums for FLOAT values (63 for BINARY and 59 for DECIMAL).

9-19 DE05



For a two-argument function (ATAN and ATAND), the arguments are converted 
to a FLOAT target with a common base. If the arguments have different bases, 
then the target base is BINARY.

Some of the mathematical built-in functions require REAL arguments. The 
following symbols are used in the definitions:

R, Rl, R2, ...

X, XI, X2, ...

If a COMPLEX argument is 
reference is invalid, 
assumed.

The mode of the operand must be REAL.

The mode of the operand is not restricted.

used where a REAL argument is required, the function 
An implicit conversion from COMPLEX to REAL is not

RESULTS

The storage type of the result of a mathematical function is the same as 
the storage type of its converted argument(s).

EVALUATION

The GCOS implementation of the mathematical functions uses binary 
arithmetic. If the argument is DECIMAL(p), then it is converted to BINARY(63). 
When the result of the function is obtained, it is converted back to DECIMAL(p). 
As a result of this policy, a decimal result cannot be accurate to more than 
about 20 decimal digits.

Some functions are not defined for certain arguments. In such cases, the 
definition of the function says that the ERROR condition occurs. The ERROR 
condition is used for any error that does not have its own, more specialized, 
condition. When the ERROR condition occurs, the execution of the program cannot 
resume at the point of interruption, so some disruption is inevitable. The 
details are given in the section on "Condition Handling".

A function can have a COMPLEX result if and only if its argument is 
COMPLEX. Thus a REAL argument that would produce a COMPLEX result is an error. 
Consider SQRT(X). If X is REAL and X<0, then the ERROR condition occurs; but if 
X is COMPLEX, the ERROR condition does not occur.

Some functions are potentially multi-valued. For such a function, there is 
more than one result value that satisfies the mathematical definition of the 
function. In each such case, PL/I imposes conditions on the result that provide 
a unique value. For ex ample, in the definition of SQRT, the following condition 
is g i ven:

For X REAL: SQRT(X) >= 0

Thus the negative square root is excluded and the result is uni que1y def i ned.
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The mathematical definitions of the functions as they apply to real 
arguments are not given; it is assumed that the reader who uses these functions 
is familiar with their definition. On the other hand, the definitions of the 
functions as they apply to complex arguments are given. These definitions are 
given because, although they are part of standard mathematics, they are not easy 
to find. The definitions are expressed in terms of operations on REAL values 
and make use of valid PL/I expressions.

In some of the definitions, the mathematical constants 3.14159... and 
2.71828... are referred to by the names pi and e, respectively. These names are 
not built into the PL/I language. If a programmer needs these names, he must 
declare and set them just as he would any other variable.

Functions Related to Exponentiation

There are five built-in functions that relate to the exponentiation 
operation. They are:

The EXP function, which raises the mathematical constant e = 
2.71828... to a given power.

The LOG function, which is the inverse of the EXP function.

The LOGIO and L0G2 functions, which are the inverses of 10**R and 
2**R, respectively.

The SQRT function, which raises a given number to the 1/2 power.

These functions are fundamental to scientific and engineering applications.

THE EXP FUNCTION

A reference to the function has the form:

EXP(X)

The result is e. raised to the power X, where e is the base of the system of 
natural 1ogar i thms. Examples are:

EXP(1.0000E0) = 2.7183E0
EXP(O.OOOOEO) = 1.0000E0
EXP(-l.OOOOEO) = .36788E0

For complex values, the function is defined by:

EXP(R1 + R2*11) = EXP(R1)*(COS(R2)+SIN(R2)* 11 )

Thus, for example,

EXP(0.0000E0+.78540E0I) = .70711E0+.70711E0I
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THE LOG FUNCTION

A reference to the function has the form:

LOG(X)

The result is the 1 oga r i thm base-e, or natural 1oga r i thm, of X. The function is 
the inverse of the EXP function. Examples are:

LOG(2.7183E0) = 1.0000E0
LOG(l.OOOOEO) = 0.0000E0
LOG( . 36788EO) = -1.0000E0

The argument is restricted as follows:

If X is REAL, then XCO causes the ERROR condition to occur because the 
result is a complex value.

If X is REAL or COMPLEX, X=0 causes the ERROR condition to occur 
because the result is not defined.

The result satisfies the conditions:

For X REAL: The requirement that the result must 
sufficient to make the result unique.

be REAL i s

For X COMPLEX: -pi < IMAG(LOGCX)) <= pi

For complex values, the function is defined by:

LOG(Rl + R2*l I ) = .5*LOG(Rl**2 + R2**2 ) + ATAN(R2,R1)*11

Thus, for example:

LOG( . 70711E0+. 70711E0I ) = .U5481E-5+. 78540E0I

(observe that .-70711 is approximately 1/SQRT(2) and .45U81E-5 is close to zero.

THE L0G10 AND LOG2 FUNCTIONS

References to these functions have the forms:

LOG10(R)
LOG2(R)

where the argument must be REAL. The results are the 1oga r i thm base-10 and 
1oga r i thm base-2, respectively, of R. Examples are:

LOGIC(1.0000E4) = L.OOOOEO
LOGIO(2.0000E4) = L.3010E0
LOG2(64.000E0) = 6.0000E0
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The following restriction applies to the argument:

• For both LOGIC and LOG2, if R<=0z then the error condition occurs 
because a real result does not exist.

These functions can be used to determine how many digits are required for the 
representation of a given integer in either decimal or binary representation. 
For example,

CEIL(LOG2(70)) = CEIL(6.1) = 7

which shows that 70 requires seven digits for its binary representation.

THE SQRT FUNCTION

A reference to the function has the form:

SQRT(X)

The result is a square root of X. Examples are:

SQRT(0.0000E0) = 0.0000E0
SQRT(1.0000E0) = 1.0000E0
SQRT(2.0000E0) = 1.U142E0

The argument is restricted as follows.:

If Xis REAL/ then X < 0 causes the ERROR condition to occur because 
the result is a complex value.

The result satisfies the conditions:

For X REAL: SQRT(X) >= 0

For X COMPLEX: either REAL(SQRT(X)) > 0
or REALCSQRT(X)) = 0 and I MAG(SQRT(X)) >= 0

For complex values, the function is defined by:

SQRT( R1 + R2* 11 ) = SQRT( (R3 + RD/2) + SQRT( ( R 3-R1) / 2 ) * 11

where

R3 = SQRT(R1**2+R2**2)

Thus, for example:

SQRT( 3.0000E0 + U. 0000E0I ) = 2.0000E0 +1.0000E0I
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Trigonometric Functions

There are ten built-in functions for trigonometry. They are:

The SIN, COS, and TAN functions, which assume that their arguments are 
in radi ans.

The SIND, COSD, and TAND functions, which assume that their arguments 
are in degrees.

The ordinary ATAN and ATAND functions, which each have one argument 
and are the conventional inverses of the TAN and TAND functions.

The Cartesian ATAN and ATAND functions, which each have two arguments 
and have results which range over all four quadrants of the coordinate 
system.

The functions are not the usual textbook selection; instead, the functions are 
selected and designed for the needs of practical computing. For example, the 
secant function is omitted because it is rarely used and can be expressed in 
terms of the COS built-in function. On the other hand, the Cartesian ATAN 
function, rarely mentioned in trigonometry texts, is included because it is 
needed for calculation of complex values and certain other calculations.

THE SIN, COS, AND TAN FUNCTION

References to these functions have the forms:

SIN(X) 
COS(X) 
TAN(X)

X i s assumed tofange.nt.,or

0.0000E0
1.0000E0
1.0000E0

SIN(O.OOOOEO) 
COS(3.1416E0) 
TAN(.78540E0)

The result is the si n e_, 
be expressed in rad i ans.

For complex values, the function is defined by:

SIN(R1 + R2*11) = SIN(R1)*COSH(R2) + COS(R1)*SINH(R2)* 11 
COS(R1 + R2*11) = COS(R1)* COSH(R2) - S I N( RD *S I NH( R2)* 11 
TAN(R1 + R2*11) = SIN(R1+R2*11)/COS(R1+R2*11)

Thus, for example:

SIN( 0.0000E0+1.0000E0I) = 0.0000E0 +1. 1752EOI 
COSCO.0000E0+1.0000E0I) = 1.5431E0+0.0000E0I 
TAN(0.0000E0+1.0000E0I) = 0.0000E0+.76159E0I
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THE SIND, COSD, AND TAND FUNCTIONS

References to these functions have the forms:

SIND(R)
COSD(R)
TAND(R)

where the argument must.be REAL. The result is the sine, cosine, or tangent, 
respectively, of R. R is assumed to be expressed in degrees. For example:

SIND(O.OOOOEO) = O.OOOOEO 
COSD(180.00E0) = -1.0000E0 
TAND(1*5.000E0) = 1.0000E0

THE ORDINARY ATAN FUNCTION

A reference to the function has the form:

ATAN(X)

The result is the arctangent, expressed in radians, of X. Examples are:

ATAN(1.0000E0) = .78540E0
ATAN(0.0000E0) = O.OOOOEO
ATAN(1.0000E10) = 1.5708E0

The argument is restricted as follows:

If X is COMPLEX, then X=+ll or X=—II causes the ERROR condition to 
occur because the result is not defined.

The result satisfies the conditions:

For X REAL:
For X COMPLEX:

-pi/2 < ATAN(X) < pi/2
-pi/2 < REAL(ATAN(X)) < pi/2

For complex
funct i on:

values, the function is defined in terms of the ATANH built-in

ATAN(X) = -II*ATANH(X*1I)

Thus, for example:

ATAN( 0.0000E0-2.0000E0I) = 1.5708E0-.54931E0 I

where this result is approximately

pi/2 - (1/2)*IOG(5)*1I
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THE ORDINARY ATAND FUNCTION

A reference to the function has the form:

ATAND(R)

where the argument must be REAL. The 
degrees, of R. Examples are:

ATAND(1.0000E0) = U5.000E0
ATAND(0.0000E0) = 0.0000E0
ATAND(1.0000E10) = 90.000E0

result is the arctangent, expressed in

The result satisfies the condition:

-90 < ATAND(R) < 90

THE CARTESIAN ATAN FUNCTION

A reference to the function has the form:

ATAN(R1,R2)

The arguments must be REAL. This function can be used to calculate the angular 
coordinate, in radians, of a point in the X-Y plane. Specifically,

Suppose a point is given with the coordinates:

y = R1 
x = R2

Then the result of the function reference ATAN(R1,R2) is the angle of 
a line that begins at the origin of the coordinate system and passes 
through the given point. The angle is expressed in radians, is 
measured counter-clockwise from the X axis, and is in the range:

-pi < ATAN(R1,R2) <= pi

Because this function puts the angle in the correct quadrant, it simplifies 
calculations. Observe, however, that the arguments are written in y,x order; 
this is contrary to conventional mathematical practice, which usually gives 
coordinates in x,y order. Some examples of the function are:

ATAN(0.0000E0,1.0000E0)
ATAN(1.0000E0,1.0000E0)
ATAN(9.0000E2,9.0000E2)
ATAN(1.0000E0,0.0000E0)
ATAN(1.0000E0,-1.0000E0) =
ATAN(0.0000E0,-1.0000E0) =
ATAN(-1.0000E0,-1.0000E0) =

0.0000E0
.78540E0 (= (l/4)*pi)
. 785U0E0 ( = (l/l»)*pi )
1.5708E0 (= (l/2)*pi)
1.3562E0 (= (3/4)*pi)
3.1U16E0 (= pi)

-2.3562E0 (= -(3/U)*pi)
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The arguments must be REAL; furthermore:

R1 = 0 and R2 = 0 cause the ERROR condition to occur because the
function is not defined at the origin of the coordinate system.

The function can be defined in terms of the ordinary ATAN built-in 
fol 1ows:

ATAN(Y,X) =

ATAN(Y/X) 
pi/2 
ATAN(Y/X)+pi 
ATAN(Y/X)-pi 
-pi/2

for 
for 
fo r 
for 
for

any Y and X > 0
Y > 0 and X = 0
Y >= 0 and X < 0
Y < 0 and X < 0
Y < 0 and X = 0

function as

The function can be used to obtain the argument of a complex value; that is:

ARG(X) = ATAN(I MAG(X),REAL(X))

Observe, again, that the order of arguments is the reverse of the usual order.

THE CARTESIAN ATAND FUNCTION

A reference to the function has the form:

ATAND(R1,R2)

where the arguments must be REAL. The function is used to compute 
coordinate, in degrees, of a point in the X-Y plane. The function 
terms of the Cartesian ATAN function, as follows:

the angular
i s def i ned i n

ATAND(R1,R2) = (180/pi)*ATAN(R1, R2)

Examples are:

ATAND(0.0000E0,1.0000E0) = 0.0000E0
ATAND(1.0000E0,1.0000E0) = ^5.000E0
ATAND(1.0000E0,-1.0000E0) = 135.00E0
ATAND(0.0000E0,-1.0000E0) = 180.00E0
ATAND(-1.0000E0,-1.0000E0) = -135.00E0

The following restriction applies to the argument:

R1 = 0 and R2 = 0 causes the ERROR condition to occur.
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Hyperbolic Functions

There are four built-in hyperbolic functions. They are:

• The SINH, COSH, and TANH functions

• The ATANH function, which is the inverse of the TANH function

These functions are used primarily for calculations with complex numbers.

THE SINH, COSH, AND TANH FUNCTIONS*

References to these functions have the forms:

SINH(X)
COSH(X)
TANH(X)

The result is the hyperbolic sine, hyperbo 1i c cosine, or hyper bo 1i c tangent, 
respectively, of X. It is assumed that X is expressed in radians. Examples 
are:

SINH(l.OOOOEO)
COSH(1.0000E0)
TANH(1.0000E0)

= 1.1752E0
= 1.5431E0
= .76159E0

For complex values, the function is defined by:

SINH(R1 + R2*11) 
COSH(R1 + R2* 11) 
TANH(R1 + R2*11)

= SINH(R1)* COS(R2) + COSH(R1)*S1N(R2)* 11 
= COSH(R1)* COS(R2) + SINH(R1)*SIN(R2)* 11 
= SINH(R1 + R2*11)/COSH(R1 + R2*11)

Thus, for example:

SINH(0.0000E0+.785U0E0I) = 0.0000E0+.70711E0I 
COSH(0.0000E0+.785U0E0I) = .70711E0+0.0000E0I 
TANH( 0.0000E0+. 785U0E0I ) = 0.0000E0+1.0000E0I

(where . 785U0 is an approximation of pi/U. )
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THE ATANH FUNCTION*

A reference to this function has the form:

ATANH(X)

The result is the arc hyper bo 1i c tangent, expressed in radians, of X. Examples 
are:

ATANH(O.OOOOEO) = 0.0000E0 
ATANHC.76159E0) = 1.0000E0

The argument is restricted as follows:

If X is REAL, then ABS(X) > = 1 causes the ERROR condition to occur 
because the result is a complex value.

If X is COMPLEX, then X = +1 or X = -1 causes the ERROR condition to 
occur because the result is not defined.

The result satisfies the conditions:

For X REAL: (The requirement that the result must be REAL is
sufficient to make the result unique.)

For X COMPLEX: -pi/2 < I MAG(ATANH(X)) <= pi/2

For complex values, the function is defined in terms of the LOG built-in 
funct i on:

ATANH(X) = LOG((1+X)/(1-X))/2

Functions for Statistical Analysis

There are two built-in functions that relate to statistical calculations. 
They are:

The ERF function, which is the error funct i on

The ERFC function, which is the comp 1 ement of the error function.
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THE ERF AND ERFC FUNCTIONS

References to these functions have the form:

ERF(R)
ERFC(R)

where the argument must be REAL. The results are the error 
error f unc.t i on comp 1 emen 11 respectively, of R. For example:

ERF(O.OOOEO) = 0.000E0
ERF(l.OOOEO) = .8U27E0
ERFC(0.000E0) = 1.000E0

funct i on and the

The functions are defined by the equations:

rR
ERF(R) = (1/SQRT(pi))*/ e**(-t**2)dt

ERFC(R) = 1 - ERF(R)

STRING OPERATIONS

The string operations manipulate str i ng-re 1 a ted values. A string-re1 a ted 
value is: 

a stri ng, 
an integer 
an i n tege r

that gives a position in a string, or 
that is the length of a string.

Each string operation converts its operands or arguments to string-re1 a ted 
values and then computes a result that is also a string-re1ated value.

Conventions for Definitions

The string operations that are defined here have some points in common. In 
particular, they are uniform in their handling of the storage types, both for 
arguments and for results. Therefore, the following general conventions can be 
adopted for use in the definitions.
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ARGUMENTS

As the first step in the interpretation of an operation, the storage types 
of the arguments are checked. In the case of string operations, there are not 
many possibilities for the storage types, and so the requirements can be 
indicated by using special symbols for the operands or arguments. For example

( Bl & B2 )

means that both operands of the "and" operator should be bit strings.

The complete conventions for the symbols used for the string operations 
a r e i

B, Bl, B2, ... The value of the argument should have string-type
attribute BIT.

C, Cl, C2, ... The value of the argument should have string-type
attr i bute CHAR.

S, SI, S2, ... The value of the argument should have string-type
attribute BIT or CHAR.

1/ K/ ••• The value of the argument should be arithmetic. It is 
converted to FIXED BlN(24,0) unless it already has that 
storage type.

Some remarks on the s i gn i f i cance of these conventions are necessary:

In some cases, two string operands must agree in their lengths. In 
such cases, blank characters or zero bits are added at the right end 
of the shorter string until its length is equal to that of the other 
string.

Arguments for which the symbol is I, J, K, ... either give a position 
in a string or the length of a string. The value 24 is used as the 
number-of-digits for all such arguments because a 24-bit integer is 
the smallest suitable data type that can accommodate the length of the 
longest possible bit-string in GCOS PL/I.
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Concatenate Operations

The 
purpose,

simplest operation on string 
PL/I has two built-in operations:

va1ues i s conca tena t i on. For this

The concatenate operation, which yields
first operand string and continues with

a string that 
the second.

The COPY function, which concatenates a given string 
given number of times.

starts wi th the

with i tse1f a

These two operations nicely reflect the balance in the set of built-in 
operations of PL/I. The concatenate operator is fundamental and cannot be 
expressed in terms of simpler operations. In contrast, the COPY function could 
easily be programmed by the user in terms of the concatenate operation, but the 
programmed form would be much less efficient than the built-in COPY function.

THE CONCATENATE OPERATOR

A parenthesized operator expression for the operator has the form: 

( SI ! ! S2 )

The result is the concatenation of SI and S2. For example,

( "ABC"1!"DE" ) = "ABCDE"
( "ABCDE"!!"" ) = "ABCDE"
( "ABCDE"! ! "t^^" ) = "ABCDE0I6"

If the values of the operands, SI and S2, are both bit strings, 
bit string:

the result is a

( "011"B!!"1101"B ) = "OllllOr'B

THE COPY FUNCTION

A reference to the function has the form:

COPY(S,I)

The result is the concatenation of I copies of S. For example,

COPY("ABC",2) = "ABCABC"
C0PY("ABC",0) = ""

If S has a bit-string value, the result is a bit-string value:

COPY("110"B,2) = "110110"B
COPY(" 110"B,0) = ”"B
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Substring Operations

There are five built-in
a given string. They are:

operations for obtaining or locating a substring of 

The SUBSTR function, which yields a substring of the given string that 
begins at a given position and has a given length.

The INDEX function, which yields the position in the given string of 
an occurrence of another given string.

The BEFORE and AFTER functions, which yield a substring of the given 
string that occurs before or after an occurrence of a second given 
string.

The DECAT function, which is a generalization of the BEFORE and AFTER 
funct ions.

The SUBSTR and INDEX functions are fundamental to any string processing. The 
remaining functions are used primarily in advanced string processing, such as 
compiling and command-string processing.

THE SUBSTR FUNCTION

A reference to the function has one of the forms:

SUBSTRCS,I,J)
SUBSTRCS,I)

The result is the substring of S that begins with the I th character and has 
length J. For example:

SUBSTRC"ABCDE”Z1,4) = "ABCD"
SUBSTR("ABCDE",3,1) = "C"
SUBSTRC"ABODE",3,0) = ’”’

If J is not given, the substring begins with the I th character and continues to 
the end of S:

SUBSTRC"ABODE",1) = "ABODE"
SUBSTR("ABODE", 3) = ”CDE”

Two kinds of errors are possible in the use of SUBSTR, and both cause the 
STRINGRANGE condition to occur. First, it is an error to use a negative value 
for J (the length of the substring). Thus:

SUBSTRC"ABODE",3,-2) = ? (STRINGRANGE condition)

Second, it is an error to attempt
of the given string. Thus:

to refer to a character that is beyond the end

SUBSTRC"ABODE",3,U) = ?
SUBSTRC"ABODE",0,2) = ?

(STR I NGRANGE condi t i on) 
(STRINGRANGE condi tion)
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There is an exception to this rule: the character after the end of S can be 
referred to provided it is not used in the substring; this can only happen if 
the requested string has length 0. Thus:

SUBSTR("ABCDE",6,0) = 
SUBSTR("ABCDE”,6) = "

The pseudo-variable named SUBSTR is described 
"Value Assignment".

later, in the section on

THE INDEX FUNCTION

A reference to the function has the form:

INDEX(S1,S2)

The result is a FIXED BIN(24,0) value that is the position of the beginning of 
the leftmost occurrence of S2 in SI. For example:

INDEX("ABCDE","D") = U
INDEX("ABCDE","DE") = U
INDEX("ABCDE","ABCDE") = 1
INDEX("101110"Bz"lll"B) = 3

If S2 is not contained in SI, then the result is zero; thus:

INDEX("ABCDE","BXD") = 0
INDEX("","D") = 0
INDEX("101110"B,"010"B) = 0

If S2 is the null string, the result is also zero; thus:

INDEX("ABCDE","" ) = 0

The function can be used both to locate a substring and to determine whether a 
substring is present. For some arguments, INDEX is related to SUBSTR as 
fo11ows:

1 = INDEX(S,SUBSTR(S,I)) for 0 < I <= LENGTH(S)

To illustrate this identity, suppose S is "ABCDE" and I is 2; then,

2 = INDEX("ABCDE",SUBSTR("ABCDE", 2))
2 = INDEX("ABCDE","BCDE")
2 = 2
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THE BEFORE FUNCTION

A reference to the function has the form:

BEFORE(S1,S2)

The result is the substring of SI that is before the leftmost occurrence of S2 
in SI. For example:

BEFORE("ABCDE","BC") = "A" 
BEFORE("ABCDE","ABC") = "" 
BEFOREC"ABCDE","E") = "ABCD" 
BEFORE("ABCDE","ABCDE") = ""

If necessary, a null string is assumed 
nothing is before a null string:

at the begi nni ng of S2; therefore,

BEFORECABCDE","") = ""

If there is no occurrence of S2 in SI, then an occurrence 
of SI; therefore, all of SI is before S2:

"ABCDE"BE FORE("ABCDE","BXD" 
BEFORE("","A") = ""

i s assumed at the end

If both arguments yield bit strings, then the result is a bit string:

BEFORE("011101"B,"11"B) = "0"B

THE AFTER FUNCTION

A reference to the function has the form:

AFTER(S1,S2)

The result is the substring of SI that is after the leftmost occurrence of S2 in 
SI. For example:

AFTER("ABCDE","BC") = "DE"
AFTER("ABCDE","ABC") = "DE"
AFTER("ABCDE","E") = "" 
AFTER("ABCDE","ABCDE") = ""
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If necessary, 
therefore, a 11

a null string is assumed at the begi nn i ng of SI (as with BEFORE); 
of SI occurs after the null string:

AFTERCABCDE","") = "ABODE"

If there is no occurrence of S2 in SI, an occurrence 
(as with BEFORE); therefore, none of SI is after S2:

is assumed at the end of SI

AFTERCABCDE","BXD") =

If both arguments yield bit strings, then the result is a bit string.

AFTER("1110111"B,"0"B) = "111"B

The BEFORE and AFTER functions are closely related. The expression

BEFORE(S1,S2)I IAFTER(S1,S2)

always yields a copy of SI from which the leftmost substring that 
been deleted; for example:

BEFORECABCDE","CD") ! 1 AFTERCABCDE","CD") = "ABE"
BEFORECABCDE","CX") I 1 AFTERCABCDE","CX") = "ABCDE"

matches S2 has

THE DECAT FUNCTION

A reference to the function has the form:

DECAT(S1,S2,B)

The result is a string that is "deconcatenated" from SI in a relatively 
complicated way. The third argument, B, is converted toabit string of length 
three. The result string of the DECAT function is thought of as a sequence of 
three' substrings, and each substring is controlled by one of the bits in the 
value of B, as follows:

If the first bit is one, then the first 
otherwise, it is the null string.

substr i ng

If the second bit is one and S 2 is contained in SI, 
substring is S 2; otherwise, it is the null string.

If the third bit 
otherwise, it is

i s one, then the 
the null string.

third substring

is BEFORE(S1, S2) ;

then the second

is AFTER(S1,S2);

Thus, for example, for any SI

DECAT(SI,S2,”101”B) 
DECAT( S 1, S 2, ”000”B) 
DECAT(S1,S2,”100”B)

and S2:

= BEFORE(S1,S2) 1 !AFTER(S1,S2)
_ ””
= BEFORE(S1,S2)

If S2 occurs in SI: 

DECAT(S1,S2,"110”B) 
DECAT(SI,S2,”

= BEFORE(S1,S2)1!S 2
= BEFORE(SI,S2)1’S2!!AFTER(S1,S2)
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But if S2 does not occur in SI:

DECAT(S1,S2,"110"B) = BEFORE(S1,S2) 
DECAT(S1zS2z!,111,!B) = BEFORE(S1,S2)!!AFTER(S1,S2)

Some specific examples are;

DECAT("ABODE","D",”000"B) = "" 
DECATC"ABODE”,"D",”00 T’B) = "E" 
DECAT("ABODE","D","010"B) = "D" 
DECATC"ABODE","D"z"011"B) = "DE" 
DECAT("ABODE","D","100"B) = "ABO" 
DECAT("ABCDE","D","101"B) = "ABCE" 
DECAT("ABODE","D","110"B) = "ABCD" 
DECAT("ABODE","D",”111"B) = "ABODE"

The pr i mary 
single name. 
at execution

purpose of the DECAT function is to provide eight functions under a 
A secondary purpose is to allow convenient selection of a function 

time; this is done by using a variable expression for B.

Relational, Length, and Reverse Operations

After the concatenation and substring 
a few built-in operations remain that can 
strings. They are:

operations have been considered, only 
apply to both character and bit

• The relational operators, which includes 1 = ’ z ’<’z and six other 
similar operators. Only the application of these operators to string 
values is defined here.

The LENGTH function, which yields the length of a given string.

The REVERSE function, which yields a 
characters or bits of the given string but

string that contains the 
in reverse order.

The relational operators (as applied to strings) are primarily used in advanced 
string processing, especially in sorting text data. The LENGTH function is 
fundamental to any string manipulation. The REVERSE function is used in 
advanced string processing.
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THE RELATIONAL OPERATORS FOR STRING VALUES

A parenthesized expression for a relational operator has the form:

( SI op S2 )

is one of the following:operator, oj£,

1 ess

fol 1ows:asThe can

s 
s 
s 
s 
s 
s 
s 
s

If both operands yield string values and neither 
numeric picture attribute, then the expression 
and is described here.

i s declared with a 
s a string compar i son

If either operand yields an arithmetic value or a character string 
declared with a numeric picture attribute, then the expression is an 
a 1geb ra i c compar i son and is described earlier in this section under 
"The Relational Operators for Arithmetic Values”.

If both operands yield address values, then the expression is an 
address compar i son and is described later in this section under "The 
Relational Operators for Address Values”.

The result of a comparison expression is ”1”B or ”0”B depending on whether 
the comparison is true or false. When the operand values have the same length 
and type, they can be equal only if they are identical. For example,

( "ABODE” = "ABODE” ) = ”1”B
( "ABODE” = "ABCDX” ) = ”0”B
( "ABODE” A= "ABCDX” ) = ”1”B
( ”1101”B = "llOT'B ) = ”1”B

When the operand values have different lengths, characters or bits are added to 
the right end of the shorter operand value. B1 ank characters are added to a 
character string; zero bits are added to a bit string. For example:

( "ABODE” = "ABC” ) = ( "ABODE” = "ABCbb" ) = "0”B
( ”11”B = ”111”B) = ( ”110”B = ”111”B ) = ”0”B

Because of the extension of a short operand value, operand values that are not 
originally identical can satisfy the ’=’ operator; for example:

( "ABCbb" = "ABC” ) = ( "ABCbb" = "ABCbb" ) = ”1”B
( ”11”B = ”110”B ) = ( ”110”B = ”110”B ) = ”1”B
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The result of a comparison expression whose operand includes or ’>* 
depends on the co.l_l a t i ng sequence. The collating sequence is a character string 
in which each possible character occurs exactly once. A character is less than 
another character if the first occurs before the second in the collating 
sequence. Similarly, a character is greater than another if the first occurs 

■g-f- t er. the second. The collating sequnce is an unalterable part of the 
definition of GCOS PL/I, but it can vary from one implementation of PL/t to 
another.

The full collating sequence is given later in this section, under ’’The 
COLLATE Function". For the examples that are given here, an abbreviated version 
of the collating sequence is sufficient:

... (blank) ... 0123456789 ... ABCDEFGHIJKLMNOPQRSTUVWXYZ ...

Observe that, for example, C is less than M 
greater than the blank character.

and, for another example, C is

Examples of "less than" and "greater than" comparison expressions are:

( "C" < "M" ) = "1"B
( "C" A< "M" ) = "0"B
( "C” <= "M" ) = "1"B

When the operand values are of length greater than one and are not identical, 
they are examined from left to right until a difference is found; the first 
differing character position is the sole basis for the comparison. For example:

( "ABCDE" < "ABCXY" ) = ( "D" < "X" ) = "1"B 
( "ABCDE” > "VWXYZ" ) = ( "A" > "V" ) = "0"B

As already noted, operands of different lengths are adjusted so that their 
lengths agree; for example:

( "ABC" < "ABCDE" ) = ("ABCbb" < "ABCDE" )
= ( "b" < "D" ) = "1"B

( "000" < "0000" ) = ( "000b" < "0000" )
= ( "b" < "0" ) = ”1"B

When bit strings are compared, ’0’ is less than ’1’; thus:

( "0"B < "1"B ) = "1"B
( "iouoi"B > "lonir’B ) = ( "o"b > "i"b ) = "o"b
( "1"B < "100"B ) = ( "100"B < "100"B ) = "0"B
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THE LENGTH FUNCTION

A reference to the function has the form:

LENGTH(S)

The result is a FIXED BIN(2U,0) value that is the length of the string that is 
the value of S. For example,

LENGTH("ABCDE") = 5
LENGTHC") = o
LENGTH("101010"B) = 6

Note that for a VARYING string the 1ength is different from the maximum 1 ength. 
Suppose the variable X is declared by

DCL X CHAR(10) VARY I NG;

and has the value "ABC". Then

LENGTH(X) = 3

rather than 10.

THE REVERSE FUNCTION

A reference to the fu net i on has the form:

REVERSE(S)

The resu 1 t is a string which is the reverse of the value of S. For example,

REVERSE("ABCDE") = "EDCBA" 
REVERSE("A") = "A" 
REVERSEC") = ""
REVERSE("11101"B) = "10111"B

Some of the built-in operations perform a left-to-right search of a string. 
When a r i gh t-to-1 ef t search is required, the REVERSE function can be used to 
adjust the given string. The following example finds the position of the first 
occurrence of A from the r i gh t end of the given string:

LENGTHU'ABACAD") - INDEX(REVERSE("ABACAD"),"A") + 1
= 6 - INDEX("DACABA","A") +1
= 6-2 + 1
= 5
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Bit-String Operations

Certain built-in string operations can be applied only to bit strings; 
they are:

• The logical operators, which perform the "not", "and", and "inclusive 
or” operations of Boolean logic.

• The BOOL function, which is a genera1ization of the three logical 
operators and which can perform any of the 16 operations of Boolean 
logic.

The logical operators are used in all programming applications, 
the operands are one-bit strings produced by tests of data, 
is used in occasional advanced applications, especially for 
str i ngs.

especially when 
The BOOL function 
masking of bit

THE LOG!CAL OPERATORS

A parenthesized expression for a logical operator has one of the forms;

( A B2 ) (not)
( Bl & B2 ) (and)
( Bl 1 B2 ) (inclusive or)

The result is a
one, the resu1t

bi t-stri ng value.
is g i ven by one of

When both operands are a bit string of length 
the following examples:

( A ”0”B ) = ”1”B
( A U1”B ) = ”0"B

( ”0”B & ”0”B ) = ”0”B 
( "0"B & ”1”B ) = ”0”B 
( "1”B & ”0”B ) = ”0”B 
( ”1”B & ’’T’B ) = ”1”B

( ”0”B !
( "0”B 1 
( ”1”B ! 
( "1"B !

"0”B ) = ”0”B 
”1”B ) = ”1”B 
"0”B ) = ”1”B 
”1HB ) = ”1”B

When operand strings are longer than one bit, the rules just given are applied 
to the individual bits, as follows. For the ’’not" operation, the rule is 
applied to the first bit of the operand to produce the first bit of the result; 
and so on, for the other bit positions:

( A "lllOOOr'B ) = ”0001110”B

For the ”and” and "or" operations, the rules are applied to the first bit of the 
first operand and the first bit of the second operand to produce the first bit 
of the result; and so on for the other bit positions:

( ”1100”B & ”1001”B ) = ”1000"B
( "1100”B ! ”1001"B ) = "llOT’B

When one operand is shorter than the other, zero bits are added to the right end 
of the shorter operand; thus:

( ”1”B & "00H"B ) = ( ”1000”B & "OOir’B ) = ”0000”B
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THE BOOL FUNCTION

A reference to the function has the form:

BOOL(B1,B2,B3)

The result is a bit string that is produced by applying to Bl and B2 and 
operation specified by B3. The third argument, B3, is converted to a bit string 
of length four. Suppose the bits in B3 are bl, b2, b3, and b4. Then if Bl and 
B2 are both bit strings of length 1, all possible results are given by the 
following examples:

BOOK "0"B, ”0”B, B3 )
BOOK "0MB, "KB, B3 )
BOOL( "1"B, "0"B, B3 )
BOOK "1"B, ”1,,B, B3 )

As a specific example, suppose B3 i s ’'0001”; then;

BOOK "0"B, "0"B, "0001"B ) = "0"B
BOOK "0"B, "KB, "ooor’B ) = "0"B
BOOK "KB, "0"B, "0001"B ) = "0"B
BOOK "KB, "KB, "0001"B ) = "KB

Comparison of these 
earlier suggests that

equations with the definition of 
they are the same; indeed:

the opera tor g i ven

BOOL(B1,B2,”0001”B) = ( Bl & B2 )

S i m i 1 a r 1 y,

BOOL(B1,B2,"0111”B) = ( Bl ! B2 ) 
BOOL(Bl,B2,"1010"B) = ( A B2 )

Thus the BOOL function provides a general way of defining logical ope ra t ions.

When 
operated 
examp 1e:

Bl and B2 are bit strings of length greater than 
upon • on a bit-by-bit basis just as with the logical

one, they are 
operators. For

BOOL("111"B, "101"B, ”0001"B) = "10KB

When one operand is shorter than the 
of the shorter operand, just as with

other, zero bits are added to the right end 
the logical operators; thus:

BOOL("1"B,"0011"B,”0001"B) = BOO L( " 1000"B, "001KB, "0001"B) = "0000"B
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Character~String Operations

Three built-in operations can be applied only to character 
are:

str i ngs;

The SEARCH and VERIFY functions, which are used to find the beginning 
and end of a generalized substring of a given string.

The TRANSLATE function, which is used to modify a string by the 
systematic replacement of certain characters by certain other 
characters.

THE SEARCH FUNCTION

A reference to the function has the form:

SEARCHC Cl,C2)

The result is a FIXED BIN(24,0) value that is the position in Cl of the leftmost 
occurrence of any character contained in C2. Sometimes C2 is a single 
character; for example:

SEARCH("+328.02",".") = 5
SEARCH (’’ALPHA, BETA, GAMMA",",") = 6

In other cases, more than one character is used in C2; thus:

SEARCH("A2*(BETA-GAMMA)","+-*/()") = 3
SEARCH("18.2344E-2","E+-") = 8

When Cl does not contain any character in C2, the result is zero:

SEARCH (’’+32 8.02", ’’;") = 0
SEARCH("ABCDE","") = 0

THE VERIFY FUNCTION

A reference to the function has the form:

VERIFY(C1,C2)

The result is a FIXED BIN(24,0) value that is the position of the first 
character of Cl that does not occur in C2. For example;

VERIFY("ALPHA-BETA","ABODEFGHIJKLMNOPQRSTUVWXYZ”) = 6
VERIFY ( " 19 2 3.9 8 E 0 2 ","0123456789") = 5

When Cl contains only characters that are in C2, the result is zero:

VERIFY("19 23.98E02"," + -012 3456789 . E") = 0
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The example just given suggests the reason for the name "verify"; the example 
checks a given string (which appears to be a decimal constant) to "verify” that 
it contains only allowed characters.

Although the function is used for "verification” as just described, it is 
more often used to ’’search for the end” of a given substring. As such, it is a 
complement to the SEARCH function, which is used to "search for the beginning” 
of a given substring. Suppose a procedure must be written to extract the 
leftmost substring that is a sequence of digits. Before writing the procedure, 
the programmer sketches it out as follows:

The given string might be:

"ALPHA*(238+BETA)"

The SEARCH function is used to locate the beginning of the desired substring:

SEARCH("ALPHA*(238+BETA)",”0123456789”) = 8

Application of the SUBSTR function gives

SUBSTRC"ALPHA*( 238 + BETA)”, 8) = "238+BETA)”

The VERIFY function is used to locate the end of the desired substring:

VERIFY(”238+BETA)”,”0123456789”) = 4

Application of the SUBSTR function gives:

SUBSTR(”238+BETA)”,1,3) = ”238” 

which is the desired result.

THE TRANSLATE FUNCTION

A reference to the function has one of the forms:

TRANS LATE(C1,C2, C3)
TRANSLATE(C1,C2)

The result is a modification of Cl in which each character in C3 is replaced in 
Cl by the corresponding character in C2. For example:

TRANS LATE("ABCDE","2”,”B”) = "A2CDE”
TRANS LATE(" 12345”,”ABCDEFG",”1234567") = "ABODE"
TRANSLATE("28.923E-18”,”000000000","0123456789") = "00.000E-00"
TRANS LATE(”1","ABCD”,"1111”) = "A”
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C2 and C3 should be strings of equal length; however, if C2 is shorter than C3, 
blanks are added to the right end of C2:

TRANS LATE("ABCDE”,"B","BCDE")
= TRANSLATEC’’ABCDE”, ”B$|6|6,,Z "BCDE” ) = "AB^bb”

Both C2 and C3 should be given (the second form is not recommended); however, 
if C3 is not given, the collating sequence is assumed:

TRANSLATECCl,C2) = TRANSLATE(Cl,C2,COLLATEC))

Character-Set Operations

Three built-in string operations are relevant to the character set of GCOS 
PL/I. They a re:

The COLLATE function, which yields 
sequence of GCOS PL/I.

the string that gives the collating

The HIGH and LOW functions, which yield a sequence of control 
characters that have a special purpose in the preparation of output.

THE COLLATE FUNCTION

A reference to the function has the form

COLLATE COLLATEC)

The result is a character string that gives the col 1 a t i ng sequence for the 
characters that can be used in character-string values in PL/I. If a given 
character occurs before a second given character in the collating sequence, then 
the first character is "less than” the second. In this way, the collating 
sequence defines the relational operators as they apply to character strings.

The collating sequence is not the same in every implementation of PL/I; one 
reason for this variation is that different implementations use different 
character sets. GCOS PL/I uses the ASCII character set, and the collating 
sequence is the ASCII character set arranged according to the ASCII octal codes. 
The character with code 000 is first, the character with code 001 is next, and 
so on. It follows that the ASCII code for a character can be obtained by means 
of the INDEX function. For example, to obtain the decimal equivalent of the 
ASCII code for the character ”A”, write:

INDEX(COLLATE(),”A”)~1 = 97 (octal code 141)

S i mi 1 ar 1y, to obtain the character whose decimal code is 97, write:

SUBSTR(COL LATE(),97+1,1) = "A”

9-45 DE05



There are 128 characters in the ASCII character set and therefore the 
length of the collating sequence is 128. The sequence can be described in four 
oarts, as foilows:

The first part is 32 nonprinting control characters, as foilows:

000 NUL (null character)
001
... (unused)
006
00 7 BEL (al arm)
010 BS (backspace)
Oil HT (horizontal tab)
012 NL (new line = carriage return and line feed)
013 VT (vertical tab)
OIL NP (new page = carriage return and form feed)
015 CR (carriage return)
016 RRS (red ribbon shift)
017 BRS (black ribbon shift)
020
... (unused)
036
037 EGM (enter graphic mode)

2. The second part is the blank character.

The third part is the 94 printing characters, as follows:

! " #$%&’()* + ,- ./

0123456789

:;<=>? @

ABCDEFGHI JKLMNOPQRSTUVWXYZ

L \ 1 A - '
abcdefghi jklmnopqrstuvwxyz

{ I ) ~
The fourth part is a single nonprinting control character, as follows:

177 PAD (padding character)

If words are alphabetized by means of 
collating sequence determines the order of 
the collating sequence are:

the relational operators, then the 
the words. The important features of

The blank character comes before any printing character; therefore the 
following ordering results:

PLAN 
PLANE

Any digit comes before any letter. Therefore the following ordering 
r e s u 1 t s :

ALPHA
ALPHA2
ALPHA3
ALPHABET
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The letters appear in the collating sequence in uninterrupted 
alphabetical order. Therefore the following ordering results:

Boston
Cambr i dge

The punctuation marks are scattered throughout the collating sequence. 
Therefore they must be given special consideration in 
a 1phabe t i zat i on.

THE LOW FUNCTION

A reference to the function has the form:

LOW( I )

The result is a character string 
character is the first character

composed of I "NUL” characters, 
in the collating sequence.

The "NUL”

THE HIGH FUNCTION

A reference to the function has the form:

HIGH( I )

The result is a character string composed of I "PAD” characters. The ’’PAD” 
character is the last character in the collating sequence.

String Functions Defined Elsewhere

The following built-in functions yield string values but are defined 
elsewhere in this section, as indicated, because they are specialized:

BIT
CHARACTER
STRING

UNSPEC 
VALID See "Conversion Operations".

ONCHAR ONKEY
ONFIELD ONLOC See "System Variable Operations".
ONFILE ONSOURCE

DATE TIME See "System Variable Operations".
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ADDRESS AND AREA OPERATIONS

The operations discussed here include operators for the comparison of 
address values, functions that have addresses as their values, and a single 
function that has an area as its value. All of these operations are 
considerably removed from the field of routine programming; they are certainly 
useful where they are needed and include some of the innovative features of 
PL/I; but they are rarely required outside of the storage management techniques 
that characterize advanced applications.

General Address Functions

There are five general funct 
address values; they are ’’general” in 
representation of address values in a 
funct ions are:

ons and operations for the manipulation of 
the sense that they are independent of the 
particular implementation of PL/I. The

The two relational operators '=’ and ,A=’, which can be used for the 
comparison of address values

The ADDR function, which yields a pointer value that is equivalent to 
any given variable reference

The NULL and NULLO functions, which yield the special null locative 
value for a pointer or an offset.

The relational operators for address values are useful whenever file values, 
local values, and so on, must be manipulated; such applications occur in 
intermediate and advanced applications. The other functions discussed here are 
used primarily in advanced applications that use based variables, list 
processing, and storage sharing.

THE RELATIONAL OPERATORS FOR ADDRESS VALUES

A 
form:

pa ren thes i zed operator expression with a relational operator has the

( Al op A2 )

where Al and 
following:

A2 must yield address values and the operator, op. i s one of the

(i s equa1 to) 
(Is not equal to)

Relational operators can also apply to computational values, as described 
earlier under ’’The Relational Operators for Arithmetic Values” and "The 
Relational Operators for String Values”.
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The result of the relational expression 
whether the comparison is true or fa 1se. 
address values, as follows:

is ”1”B or ”0”B, depending on 
Recall that there are six types of

-LABEL:
ENTRY:
FORMAT:
POINTER:
OFFSET:
FILE:

the destination of a GOTO statement
the destination of a CALL or a function reference 
the object of a remote format reference 
the ’’absolute” address of a storage unit 
the ’’relative” address of a storage unit 
the address of a file-state block

With one exception, both arguments of an address relational operator must have 
the same type. The exception is the combination of a pointer value and an 
offset value; in this case, the offset value is converted to a pointer value.

THE ADDR FUNCTION

A reference to the function has the form:

ADDR(U)

where U must be a reference to a connected variable. A variable is connected 
unless it is an aggregate variable whose components are interleaved with the 
components of some other variable. The result is a pointer value to the storage 
unit that is designated by U. Suppose the following declaration applies:

DCL 01 A(2), 
02 B FLOAT, 
02 C DEC(6,2);

Examples of the function follow:

ADDR(A)

ADDR(A(2))

ADR(A2).C)

ADDR(A.C)

gives a pointer to 
structures

gives a pointer to 
structures

gives a pointer to

storage for the

the second element

a scalar component

en t i re ar ray of

of the array of 

of A

is invalid because A.C designates an unconnected
var i ab1e

The variable A.C is unconnected because it is made up of two scalar variables, 
designated by A(1).C and A(2).C, that are not adjacent in storage. According to 
the section on ’’Storage Types”, the components of A occur in storage in the 
sequence:

A(1).B A(1).C A(2).B A(2).C

and thus A(2).B is between the two components of A.C.
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If U is a major (level-one) CONTROLLED variable reference that is not 
currently allocated, then

ADDR(U) = nul1

and the reference is valid. If U is any other variable that is not currently 
allocated, then the reference is invalid.

THE NULL FUNCTION

A reference to the function has one of the forms:

NULL NULL()

The result is the null value of data type POINTER, 
variable. Then the statement

Suppose Pl is a pointer

Pl = NULL;

assigns the null value to Pl and thus gives Pl a defined value that does not 
point to any storage unit. The variable can later be tested by a statement such 
as:

IF P1=NULL THEN GOTO L2;

Observe that a pointer variable can be in one of the following states:

If HQ. value has been assigned to the variable, then the value of the 
variable is undef i ned and any reference to that value is invalid.

If the nu11 value has been assigned to the variable, then the value 
can be assigned to another variable or compared to another locative 
value; but it cannot be used as a locator-qua1ifier because it does 
not designate a storage unit.

If a non-nu11 value has been assigned to the variable, then the value 
of the variable can be used for any purpose appropriate for a locative 
value.

THE NULLO FUNCTION*

A reference to the function has the form;

NULLO NULLOO

The result is the OFFSET value null. An offset variab1e is set to null to 
indicate that it does not point to any storage unit. The usage of NULLO is 
similar to that described under "The NULL Function".

The means that this function is not part of Standard PL/I. The
function is not imp1 ementation-dependent, but it must be replaced by other 
language in a program that is transported to some other implementation of 
Standard PL/I.
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An Implementation-Dependent Address Function

There is a function that manipulates a pointer value in a way that depends 
upon the GCOS representation of pointers; this function is not, of course, part 
of Standard PL/I. It is:

The ADDREL function, which generates a pointer to the Nth word after 
the word designated by a given pointer.

This function should be used only under special circumstances. It is 
appropriate mostly for systems programming.

THE ADDREL FUNCTION*

A reference to this function has the form:

ADDREL(P,N)

where P must yield a scalar POINTER value and N must yield either:

an integer value of no more than 35 bits, or a bit-string value of 
length 18.

The result is the pointer value defined by:

W+N, where W is the word address 
portion of the value of P

word address:

b i t offse t:

Thus the result pointer designates the Nth word after the word to which P 
points.

The after the name of this function indicates that the function is not 
in Standard PL/I. A reference to this function makes a program dependent on the 
data representation of GCOS PL/I.
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An Area Function

There is one function for area values. It is:

The EMPTY function, which gives the value of an area in which no 
variable is currently allocated

This function is used in advanced applications where special storage management 
techniques are used.

THE EMPTY FUNCTION

A reference to the function has the form:

EMPTY EMPTY()

The result is the empty value of data type AREA. Suppose A is declared as an 
area variable; then the statement:

A = EMPTY;

can be used to assign the empty value to A and thus free all storage units 
currently allocated in A.

ARRAY OPERATIONS

Most of the functions and operators of PL/I can be applied to both scalar 
and array operands. However, each of the functions described here must have an 
array as its first operand, and it is in this sense that these are array 
functions.

Extent Functions

There are three functions that yield the values that describe a dimension 
of an array. They are:

The LBOUND and HBOUND functions, which yield the bounds of a given 
dimension of an array

The DIMENSION function, which yields the extent of a given dimension 
of an array

These functions are useful for operations on an array whose bounds are given by 
variable expressions. They are essential for determining bounds or extents of 
an array that is a procedure parameter with ’*’ extents; this case is discussed 
later, in the section on "Procedure Invocation”.
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THE LBOUND AND HBOUND FUNCTIONS

References to these functions have the forms:

LBOUNDCA,N)
HBOUNDCA,N)

where A must yield an array value and N must yield a scalar value that can be 
converted to a 17-bit integer. The result is a 24 —bi t integer whose value is 
the 1ower bound or upper bound, respectively, of the Nth dimension of A. As a 
basis for examples, consider the program:

P: PROC•
DCL A2( J,-1:K+2,0:3) FLOAT CONTROLLED;
• • •
J = 6;
K = 20;
ALLOCATE A2;
... (Computat ion #1) 
END;

As Computation #1 begins, the functions have the following values:

LBOUND(A2,1) = 1
LBOUNDCA2,2) = -1 
LB0UND(A2,3) = 0

HBOUNDCA2,1)
HBOUNDCA2,2) 
HBOUNDCA2,3)

= 6
= 22
= 3

If N does not designate a declared dimension of A, a reference to either of 
these functions is invalid.

THE DIMENSION FUNCTION

A reference to the function has the form:

DIMENSION(A,N) DIM(A,N)

where A must yield an array value and N must yield a scalar value that can be 
converted to a 17-bit integer. The result is the ex ten t of the Nth dimension of 
A. For any valid arguments, A and N,

DIM(A,N) = HBOUND(A,N) - LBOUND(A,N) + 1
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There are three functions for special operations on 
corresponds to a well-known mathematical operation, as follows:

arrays. Each

The SUM function, which performs the 
represented in mathematics by a capital

summat i on 
s i gma.

The PROD function, which 
represented in mathematics

performs the product 
by a capi ta1 pi .

operation

ope ration

and

and

i s

i s

The DOT function, which performs the dot product operation and is 
represented in mathematics by a dot written between two vector names.

These functions are usually applied to FLOAT values, and their use in that 
context is simple. However, they are also defined for FIXED values.

THE SUM AND PROD FUNCTION

References to the functions have the forms:

SUM(A)
PR0D(A)

where A must yield an array whose elements are arithmetic values, 
a scalar value that is the sum or product of the elements of A. 
of the result is the same as that of the argument, except for the 
fixed-point value. If A is FIXED with precision (p,q), then the 
the result is

The resu1t is
The data type 

precision of a 
preci s i on of

(71,q)
(59,q)

for BINARY base 
for DECIMAL base

As a basis for discussion, consider the program:

P• PROC-
•DCL A3(2,3) FLOAT DECO);

DCL A4( 3) FIXED DECO,2); 
• • •
A3 = 5;
A3(l,3) = 10;
A4( 1) = 6;
A4(2) = .5;
A4(3) = .04;
... (Computation #1) 
END;

As Computation #1 begins:

SUMCA3) = 00035E0
SUM(A4) = 0...06.54

PR0D(A3) = 31250E0
PROD(A4) = 0. . .0.12

(59 digits)

(59 digits)
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THE DOT FUNCTION

A reference to the function has one of the forms:

DOT(A1,A2,P)
D0T(Al,A2,P,Q)

where Al and A2 must each yield a one-dimensiona1 array whose elements are 
arithmetic values, and where P and Q cannot be general expressions but instead 
must be decimal integer constants (Q can be signed). The precision of the 
converted values of Al and A2 is given by:

Reference Seali ng Preci s ion

DOT(A1,A2,P) FIXED (Pz0)

FLOAT (P)

DOT(A1,A2,P,Q) FIXED (P,Q)

The result is the dot product of Al and A2; that is, 

A1(M1)*A2(M2) + Al(M1+1)*A2(M2+1) + ... + A1(M1+E-1)*A2(M2+E-1) 

where

Ml = LBOUND(A1,1)
M2 = LB0UND(A2,l)
E = DIM(A1,1)

The operands must satisfy the condition;

DIM(A1,1) = DIM(A2,1)

CONVERSION OPERATIONS

With the exception of the special conversion functions, every conversion 
function given here can be interpreted by determining the data type of the 
target and then referring to the section on "Value Conversion" for a description 
of the required conversion. Thus although many examples of conversion are shown 
here, the rules for conversion of values are not given here.

The conversion functions of PL/I are both redundant and incomplete. There 
are three different ways to perform most, but not all, conversions; yet, for 
some important conversions, there is no way to perform the conversion that is 
acceptable to both GCOS PL/I and Standard PL/I. This situation is discussed 
later, under "Guidelines for Conversion Functions", and suggestions are given 
for the choice of a conversion function for various situations.
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The designers of GCOS PL/I took the view that a conversion between the 
three major types of computational value,

ar i thme tic, 
character-string, and 
bi t-s tr i ng

should be performed explicitly by means of a conversion function. Therefore, 
the compiler provides a warning message whenever such a conversion is performed 
implicitly. In compensation, to make explicit conversion easier, the designers 
added the nonstandard CONVERT function, whose interpretation is much simpler 
than that of the standard conversion functions.

The Fundamental Conversion Function

There is one function that 
scalar values that are possible

can pe rform all 
in PL/I. It is:

of the conversions be tween

The CONVERT function, which converts a given value to the data type of 
a gi ven var i able.

A simple and safe policy for conversion is to use only the CONVERT 
all explicit conversion. A more advanced policy is described under 
for Conversion”.

function for
”Gu i de 1i ne s

THE CONVERT FUNCTION*

A reference to the function has the form;

CONVERT(U,V)

where U must be a reference to a scalar variable and V must yield a scalar 
value. The result of the function reference is the value of V converted to the 
data type of U. The function can be used to establish any data type as the 
target for conversion, provided the conversion is valid in PL/I. The set of 
valid conversions is described earlier, in the section on ’’Value Conversion”.
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A specialized but important application of this function arises when a 
value of one major type must be assigned to a variable of a different major 
type. Suppose, for example, that the following declarations apply:

DCL ALPHA FLOAT;
DCL BETA CHAR(20);

Within the scope of these declarations, the assignment statement

ALPHA = BETA;

is marked by a warning message by the GCOS PL/l compiler because it requires an 
implicit conversion between major types. On the other hand, the assignment 
statement

ALPHA = CONVERT(ALPHA,BETA);

is not marked because the conversion is explicit. Conversion between major 
types is usually considered to be important enough to merit an assignment 
statement of its own (rather than being performed with an expression); 
therefore, the usage just shown is common.

In order to consider the function in a general way, suppose the following 
decl arat i ons apply:

DCL FIXDEC62 FIXED DEC(6,2) BASED;

DCL S CHAR(12);

Within the scope of these dec 1arations:

CONVERT(FlXDEC62,00028.3356) = 0028.33 
CONVERT(FIXDEC62,55528.3356) = (SIZE)

CONVERT(FIXDEC62,"-28”) = -0028.00

CONVERT(FIXDECG 2,”-1111.001B”) = -0015.12

CONVERTS, ”12 34 56 789 012”) = ”123456 78 9012”
CONVERTS,”1234567890123”) = (STRINGSIZE)

CONVERTS, 100) = ”|6bblOO|6|6|zW|6”

CONVERTS,-5 . 1749E-2) = " - 5.1 749 E-00 2”

The only purpose of the variable reference that is the first argument of CONVERT 
is to supply a data type; the value of that variable is neither used nor set. 
The variable can be declared especially for use in CONVERT or it can be a 
variable that is used for other purposes as well. If the variable is especially 
declared, it should be BASED so that no storage will be allocated for it.

The means that this function is not part of Standard PL/l. A use of 
this function does not perform an operation that cannot be performed in Standard 
PL/l, but a program that uses CONVERT must be slightly changed to make it 
Standard. More is said of this under ’’Guidelines for Conversion Functions”.
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Conversion to Arithmetic Data Types

There are 
for each of 
I MAG function.

seven functions 
the a 11r i bu tes
They are:

for conversion to an arithmetic data type, one 
that are used in an arithmetic data type plus the

• The REAL and COMPLEX functions for mode conversion

• The FIXED and FLOAT functions for scale conversion

• The BINARY and DECIMAL functions for base conversion

® The PRECISION function for precision conversion

These functions can be used individua11y, but they should not be compounded, as 
i n

X = FLOAT(BI NARY(Y))

because the result is difficult to predict and often is not what is desired.

THE REAL FUNCTION FOR CONVERSION

A reference to this function has the form:

REAL(Z)

where Z must be COMPLEX. The result is a REAL value that is the value of the 
real part of Z. Except for the change in the mode attribute, the storage type 
of the result is the same as the storage type of Z. If the imaginary part of 
the value of Z is zero, then the result has the same mathematical value as Z, 
and the function therefore performs a conversion from COMPLEX to REAL mode. For 
examp 1e;

REAL(-6.0000E3+0.0000E0I) = -6.0000E3

REAL(.111000111E8B+.000000000E0BI) = .111000111E8B

If the imaginary part is not zero, the function does not perform a pure 
conversion operation, but rather an operation of complex arithmetic as discussed 
earlier under "The REAL and I MAG Functions for Arithmetic".
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THE COMPLEX FUNCTION FOR CONVERSION

A reference to this function has the form:

COMPLEXCR,0)

where R must be REAL. The result is a COMPLEX value whose real part is the 
value of R and whose i magi nary part is zero. The result has the same 
mathematical value as R, and the function (in this form) therefore performs a 
conversion from REAL to COMPLEX. Complex computations are usually performed 
with FLOAT values; and for such values the storage type of the result is the 
same as the storage type of R except for the desired change of mode. Examples 
are:

COMPLEX(-6.0000E3,0) = -6.0000E3+0.0000E0I

COMP LEX(.111000111E8B,O) = .111000111E8B+.000000000E0BI

When the second argument of the COMPLEX function is not zero, the function does 
not perform a pure conversion operation, but rather an operation of complex 
arithmetic as discussed earlier under ’’The COMPLEX Function for Arithmetic”.

THE FIXED FUNCTION

A reference to this function has one of the forms:

FlXED(X)
FlXED(X,P)
FlXED(X,P,Q)

where X must yield an arithmetic value and where P and Q cannot be general 
expressions but instead must be given as decimal integer constants (Q can be 
signed). The result is the value of X converted to a certain storage type. The 
storage type of the result is determined as follows:

Reference Data Type of X Data Type of Result

FIXED(X) mode FIXED base(p,q) mode FIXED base(p,q)
mode FLOAT base(p) mode FIXED base(p,0)
CHAR(m) REAL FIXED DEC(59,0)
BlT(m) REAL FlXED BlN(71,0)

FIXED(X,P)

FlXED(X,P,Q)

as above, but with 
prec i s i on (P,0)

as above, but with 
preci s i on (P,Q)
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Examples are:

FlXED(-0435.241) = -0435.241
FIXED(-0435.241, 5, 2) = -435.24
FIXED(-0435.421,4,2) = (SIZE)
FIXED(-0435.421, 4 ) = -0435.

FIXED(+000111000.000B,9,3) = +111000.000B

FIXED(+000243.E2) = +024300.

Fl XED("-5.823E2" ) = -0... 582. ( 59 digits)
FlXED("-5.823E2",7,2) = -00582.30

F I XED( " HOB", 4, 1) = 006.0
FIXED("110"B,4,1) = 110.OB

FIXED(-81143.E-2+68134.E-71,3) = -811.+000.I

THE FLOAT FUNCTION

A reference to this function has one of the forms:

FLOAT(X)
FLOAT(X,P)

where X must yield an arithmetic value and where P cannot be a general 
expression but instead must be given as a decimal integer constant. The result 
is the value of X converted to a certain storage type. The scaling attribute of 
the result is determined as follows:

Reference

FLOAT(X)

Data Type of X

mode FIXED base(p,q) 
mode FLOAT base(p) 
CHAR(m)
BlT(m)

FLOAT(X,P)

Data Type of Result

mode FLOAT base(p) 
mode FLOAT base(p) 
REAL FLOAT DEC(59)
REAL FLOAT BIN(63)

as above, but with 
prec i s i on (P)

Examples are:

FLOAT(-89241E3) = -89241E3
FLOAT(-89241E3,3) = -892E5

FLOAT(+111000111000E4,12) = +111000111000E4

F LOAT ( "|6|62OOfe5|6|6|6" ) = 0... 200E0 (59 mantissa digits)
F LOAT( "1602001616)616", 5) = 00200E0
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THE BINARY FUNCTION

A reference to this function has one of the forms:

BINARY(X) BIN(X)
BlNARY(X,P) BIN(X,P)
BI NARY(X,P,Q) BIN(X,P,Q)

where X must yield an arithmetic value and where P and Q cannot be general 
expressions but instead must be given as decimal integer constants (Q can be 
signed). The result is the value of X converted to a certain storage type that 
is determined as follows:

Reference

BIN(X)

B I N(Xz P)

Data Type of X

mode FIXED BIN(p,q) 
mode FIXED DEC(pzq)

mode FLOAT BIN(p)
mode FLOAT DEC(p)

CHAR(m)
BlT(m)

BIN(X,P,Q) (this reference is not 
valid if X is FLOAT)

Data Type of Resu1t

mode FIXED BIN(pzq) 
mode FIXED BIN(pl,ql) 

pl = CEIL(p*3.32)+1 
ql = CElL(q*3.32) for q >= 0 
ql = -CEIL(-q*3.32) for q < 0

mode FLOAT BIN(p)
mode FLOAT BINC pl)

pl = CEIL(p*3.32) 
REAL FIXED BlN(71,0) 
REAL FIXED BIN(71,0)

as above, but with precisions 
(P,0) for a FIXED result and 
(P) for a FLOAT result

as above, but with precision 
(P,Q)

Examples are:

BIN(-1110111.0111B) = -1110111.0111B
BIN(-1110111.011 IB,8 ) = -01110111B

BINC28.25) = 00011100.0100000B

BIN(-.11101110111E8B) = -.11101110111E8B

BIN("28.25",12,6) = 011100.010000B

BIN("111000111"B,12,2) = 0111000111.00B
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THE DECIMAL FUNCTION

A reference to this function has one of the forms:

DECIMAL(X) DEC(X)
DEC I MAK X, P) DEC(X,P)
DEC IMAL(X,P,Q) DEC(X,P,Q)

where X must yield an arithmetic value and where P and Q cannot be general 
expressions but instead must be given as decimal integer constants (Q can be 
signed). The result is the value of X converted to a certain storage type that 
is determined as follows:

Refe rence

DEC(X)

DEC(X,P)

Data Type of X 

mode FIXED BIN(p,q)

mode FIXED D E C ( p, q) 
mode FLOAT BlN(p)

mode FLOAT DEC(p)
CHAR(m)
BIT(m)

DEC(X,P,Q) (this reference is not
valid if X is F LOAT)

Data Type of Result

mode FIXED DEC(pl,ql)
pl = CEIL(p/3.32) + 1
ql = CEIL(q/3.32) for q >= 0
ql = -CEIL(-q/3.32) for q < 0 

mode FIXED DEC(p,q) 
mode FLOAT DEC(pl)

pl = CE I L( p/3.32) 
mode FLOAT DEC(p) 
REAL FIXED DEC(59,0) 
REAL FIXED DEC(59,0)

as above, but with precisions 
(P,0) for a FIXED result and 
(P) for a FLOAT result

as above, but with precision 
(P,Q)

Examples are:

DEC(-0435.241) = -0435.241
DEC(-0435 . 241, 5, 3) = (SIZE)

DEC(1111.110000B) = 015.75

DEC(7.8100E0,7) = 7.810000E0 

DEC("28.25",6,3) = 028.250 

DECCllO. HOB", 4, 3) = 6.750
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THE PRECISION FUNCTION

A reference to this function has one of the forms:

PRECISI0N(X,P) 
PRECISIONS,P,Q)

PREC(X,P)
PREC(X,P,Q)

where X must yield an arithmetic, value and where P and Q cannot be general 
expressions but instead must be given as decimal integer constants (Q can be 
signed). The result is the value of X converted to a certain storage type that 
is determined as follows:

Reference Data Type of X Data Type of Resu1t

PREC(X,P) mode FIXED base(p,Q) mode FIXED base(P, 0)
mode FLOAT base(p) mode FLOAT base(P)
CHAR(m) REAL FIXED DEC(P,0)
BlT(m) REAL FIXED BIN(P,O)

PREC(X,P,Q) (this reference is not as above, but with
valid if X is FLOAT) precision (P,Q)

Examples are:

PREC( 18 . 7809, 5, 1) = 0018 .7

PREC(18.7809,5) = 00018

PREC(-111000111.11B, 10) = -0111000111B

PREC(-8.2315E0,7) = -8.231500E0

Conversion to String Data Types

There are two functions for conversion to string data types. They are:

The CHAR function, which converts a value to a character string.

The BIT function, which converts a value to a bit string.

THE CHARACTER FUNCTION

A reference to this function has one of the forms:

CHARACTER(S) CHAR(S)
CHARACTERS, I ) CHARS, I )

where S must yield an arithmetic 
converted to a 24 —bi t integer, 
length is determined as follows:

value and I
The result

must be a scalar value.that can be
is a character string whose maximum

Reference Data Type of Result

CHAR(S) CHAR(*) NONVARYING

CHAR(S,1) CHAR(I) NONVARYING
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The ’*’ means "exactly enough characters to represent the value of S after it 
has been converted to a CHARACTER value". Examples are:

CHAR("ABCDE") = "ABCDE"
CHAR("ABCDE",7) = "ABCDE0b"
CHAR("ABCDE",3) = (STRINGSIZE)

CHAR("11011"B) = "11011"
CHAR("11011"B, 7) = "HOllbb"
CHAR("11011"B,3) = (STRINGSIZE)

CHAR ( + 8 199 3E6 ) = "08 . 1993E + 010"
CHAR(+81993E6, 14) = " |6 8 . 19 9 3 E + 010 )6 j6 "
CHAR(+81993E6,10) = (STRINGSIZE)

CHAR(-0820) = "1600-820"
CHAR(-0820,12) = " 0 0 0 - 8 2 0 H 0 0 0 0 "
CHAR(-0820,6) = (STRINGSIZE)

CHAR( . 1011001. .. E7B, 20) = "08.9OOOOOOOE+OO10000"

In the last example, "..." represents enough zeros to make the argument 
FLOAT(27).

THE BIT FUNCTION

A reference to this function has one of the forms:

BIT(S)
BIT(S,I)

where S must yield an arithmetic value and I must yield a scalar value that can 
be converted to a 24-bit integer. The result is a bit string whose maximum 
length is determined as follows:

Reference

BIT(S)

BIT(S, I )

Data Type of Result

BIT(*) NONVARYING

BIT(I) NONVARYING

The means "exactly enough characters to represent the value of S after it 
has been converted to a BIT value". Examples are:

BlT("11011"B) = "11011"B
BlT("11011"B,7) = "1101100"B
BlT("11011"B,3) = (STRINGSIZE)

BITC11011") = "11011"B
BITC11012") = (CONVERSION)

BIT(.1101111E5B) = "0011100"B
BlT(18.983E0) = "00000000000010011"B

BIT(-065.29) = "0001000001"B
BIT(-065.29,12) = "000160000100"B
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Conversion between Locative Data Types

There are two functions for conversion between the two locative data types 
They are:

The standard POINTER function, which converts an offset value to a 
pointer.

The OFFSET function, which converts a pointer value to an offset.

These functions are used when locative values are used in connection with AREA 
values.

THE POINTER FUNCTION

A reference to the function has the form:

POINTER(X,A) PTR(XZA)

where X must yield a scalar offset value and A must yield a scalar area value. 
X must designate a storage unit that is currently allocated in the area A; and 
the result is a POINTER value that designates the same storage unit. Thus the 
function converts an OFFSET value to a POINTER value.

THE OFFSET FUNCTION

A reference to the function has the form:

OFFSET(P,A)

where P must yield a scalar pointer 
P must designate a storage unit that 
the result is an OFFSET value that 
function converts a POINTER value to

value and A must yield a scalar area value.
is currently allocated in the area 
designates the same storage unit, 
an OFFSET value.

A; and
Thus the

Special Conversion Functions

There are three special functions for conversion. They are:

The STRING function, which 
values into a scalar string

converts a
value.

packed aggregate of string

The UNSPEC function, which converts any value into a bit string that 
represents its actual re presentation in memory.

The VALID function, which checks, after the fact, whether or not a 
given string can be assigned to a given pictured variable.

These functions are used in advanced applications that use storage sharing and 
special input/output.
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THE STRING FUNCTION

A reference to the function has the form:

STRING(U)

The function reference is interpreted as follows:

If U yields a scalar bit-string value, the result is U.

If U yields a scalar value of any other computational type, the value 
is converted to CHAR(*) and the converted value is the result. The 
’*’ means "exactly enough characters to represent the value of U when 
it has been converted to a CHARACTER value".

If U yields an aggregate value whose components are 
nonvarying, bit-string variables, the result is a scalar 
value that is the concatenation of all of the components of 
of U.

una1i gned, 
bit-string 
the value

If U yields an aggregate value whose components are unaligned, 
nonvarying, character-string or numeric-pictured variables, the result 
is a scalar character-string value that is the concatenation of all of 
the components of the value of U.

If none of these cases apply, then the reference is invalid. This is the only 
conversion function that can convert an aggregate value to a scalar value in. an 
imp1 ementation-independent way. It is very useful in certain specialized 
applications. For example, consider the following program:

SMEM = STRING(MEMBER);

END

DCL 01 MEMBER UNALIGNED,
02 NAME CHAR(30),
02 ADDRESS CHAR(30),
02 CITYSTATE CHAR(30);

DCL SMEM CHAR(90);

In this program NAME, ADDRESS, and CITYSTATE can be manipulated as individual 
character strings, but when it is useful to have them as a single string, they 
can be assigned to SMEM through the STRING function. The assignment statement 
is equivalent to:

SMEM = NAME!1ADDRESS!ICITYSTATE;

The STRING function is closely related to _stHjl£ overlay defining which is 
discussed earlier, in the section on Storage Management •

The pseudo-variable named STRING is described later, in the section on 
"Vaiue Ass i gnment".
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THE UNSPEC FUNCTION

A reference to the function has the form:

UNSPEC(U)

where. U must be a reference to a variable. The result is a bit-string value 
that is the GCOS internal representation of the value of U, as described in the 
section on "Storage Types". Consider, for example, the program:

P: PROC;
DCL 01 ITEM UNALIGNED, 

02 COUNT FIXED, 
02 CODE CHAR(2), 
02 RATE DEC(2,1);

• • •
COUNT = 67;
CODE = "CC";
RATE = -0.5;
• • •
END;

After the three assignment statements, the values of the UNSPEC function are:

UNSPEC(COUNT) = "000000000001000011”B
UNSPEC(CODE) = "XX1000011XX1000011”B
UNSPEC (RATE) = ,,XX0101101XX01100 00XX0110101,,B

UNS PEC(ITEM) = ”0000000000010 00011XX1000011XX1000011
XXOlOllOIXXOllOOOOXXOllOlOr'B

The XX is used for the two high-order bits of each character code because these 
bits are reserved in GCOS. This example uses a variable that is UNALIGNED, but 
(in contrast to the STRING function) there is no restriction on the variable 
mentioned in the UNSPEC function. If this example were repeated without the 
UNALIGNED attribute, UNSPEC(ITEM) would contain 108 bits instead of 63 bits.

One use of the UNSPEC function is as follows: the contents of a variable is 
converted to a bit-string by means of the UNSPEC function and the result is 
output as a record to some storage device; later, the string is input and is 
assigned back to a variable of exactly the same storage type by means of the 
UNSPEC pseudo-variable. This use is a valid and standard use of PL/I, because 
it produces the same result regardless of the particular internal representation 
of a given implementation. Other uses, which test or manipulate the value of 
UNSPEC are not valid in Standard PL/I because they are, of course, 
i mp1 emen tation-dependent.

The pseudo-variab1e named UNSPEC is
’’Value Assignment”.

described later, in the section on
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THE VALID FUNCTION

A reference to the function has the form:

VALIDCS)

where S must be a scalar pictured variable. The result is "1"B or "0"B, 
depending on whether or not the value contained in S can be edited into the 
picture declared for S. The function is used in connection with storage sharing 
to check to see if an invalid value has been assigned to the pictured variable 
by way of an equivalenced variable that does not have a picture. For example, 
consider the program:

PROC;
DCL SI PIC"9999";
DCL S2 CHARC4) BASED;
DCL P POINTER;
P = ADDR(Sl);

P->S2 = ”-500";
... (Computat ion #1) 
END;

This program sneaks an invalid character-string value into the pictured numeric 
variable SI; that is, an assignment is made to P->S2 when P points to SI. If 
the assignment had been written as:

SI = "-500";

then the CONVERSION condition would have occurred. The VALID function can be 
used to check for such invalid assignments. The value of the function as 
Computation #1 begins is:

VALID(Sl) = "0"B

This indicates that the value of SI, a sign and three decimal digits is not 
consistent with the picture, four decimal digits.

Guidelines for Conversion Functions

For many data type conversions, 
conve r s i on:

there are three ways to effect the

assignment to a variable of the desired storage type and related forms 
of implicit conversion

use of one of the standard conversion functions; that is, the 
functions whose names coincide with data type attributes, such as 
F I XED

use of the nonstandard CONVERT function
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Suggestions for a choice from among these possibilities are given here.

If the target of the assignment is ar i thmet i c, then special care must be 
exercised because the compounding of some standard conversion functions produces 
results which are undesirable. Therefore:

1. When a conversion can be effected by a single standard conversion 
function, that function should be used.

2. When a conversion can be effected by a mode function compounded with a 
single scaling, base, or precision function, then those functions 
should be used.

3. When neither Rule 1 nor Rule 2 applies:

a. If it is unlikely that the program will be transported from GCOS 
to some other PL/I implementation, the CONVERT function should be 
used.

b. If transportation of the program is likely, the implicit 
conversion should be used. If GCOS generates a warning message 
because of the implicit conversion, the message should be 
i gnored.

If the target of the assignment is character-str i ng or bi t-s tr i ng, then the 
standard functions should be used in preference to the CONVERT function because 
they produce satisfactory results without departing from the standard.

Some GCOS programmers, who are not concerned about a departure from the 
standard, make consistent use of the CONVERT function to indicate all major 
conversions in a uniform way. In this case, the choice is a matter of 
programming style.

SYSTEM VARIABLE OPERATIONS

The PL/I interpreter maintains certain variables that cannot be accessed 
directly by a program. The purpose of most of the built-in functions described 
here is to provide a restricted form of access to these variables.

For example, there is a system variable that contains an encodement of the 
time of day, and this value can be retrieved by the TIME built-in function but 
cannot be set by an ordinary PL/I program. For another example, there is a 
system variable for each PRINT file that is open that contains the current page 
number of the file, and this value can be retrieved by the PAGENO function and 
set by the PAGENO pseudo-variab1e.

Several functions included here do not access system variables, but those 
functions are highly specialized, nonstandard functions that do depend heavily 
on the implementation of PL/I.
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System Counter Functions

There are four functions that take their values from counters maintained by 
the PL/I interpreter. They are:

• The LINENO and PAGENO functions, which yield the appropriate integer 
values for a given PRINT file.

• The TIME and DATE functions, which yield appropriate string values.

These functions are of general interest.

THE LINENO AND PAGENO FUNCTIONS

References to these functions have the forms:

LINEN0(F) 
PAGENO(F)

where F must yield a scalar file value that has the PRINT attribute. The result 
is a 35 —bit integer that is the current 1i ne number or page number, 
respectively, of the file F. The value is obtained from the file-state block 
de s i gna ted by F.

The pseudo-variable named PAGENO is 
"Value Assignment".

descr i bed later, in the section on

THE TIME AND DATE FUNCTIONS

References to these functions have the forms:

TIME
DATE

TI ME() 
DATE()

The result of the TIME function is a character string of length 12 whose value

2 characters for
2 characters for
2 characters for
6 characters for

the hour
the minute
the second
the mi croseconds
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The result of the DATE function is a 
i s

2 characters for the year
2 characters for the month
2 characters for the day

character string of length six whose value

For example,

TIME = 220318730211 
DATE = 740703

i s i nterpreted as

10:03:18.730211 pm 
July 3, 1974

The Storage Management Functions

There are two functions that are specifically designed for storage 
management. They are:

The ALLOCATION function, which yields the current number of 
allocations for a CONTROLLED variable.

The SIZE function, which yields the number of GCOS words necessary for 
a g i ven var i ab1e.

These functions are used in advanced applications where special storage 
management techniques are required.

THE ALLOCATION FUNCTION

A reference to the function has the form:

ALLOCATI ON(U) ALLOCN(U)

where U must be a major (level-one) controlled variable reference. The result 
is a 17 —bi t integer that is the number of generations of U that are currently 
allocated. Consider the program.

P: PROC;
DCL A(100) CHAR(20) CONTROLLED;
... (Compu tat i on #1) 
ALLOCATE A;
...(Compu tat ion # 2)
ALLOCATE A;
...(Computat ion #3)
FREE A;
FREE A;
...(Computation #4)
END;
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The value of ALLOCATI ON(A) is

0, lz 2, and 0

during Computations #1, #2, #3, and #4, respectively.

THE SIZE FUNCTION*

A reference to this function has the form:

SIZE(U)

where U must be a simple reference to a major (level-one) variable. The result 
is a 24-bit integer whose value is the number of words that would be necessary 
to allocate a storage unit for U at the time the SIZE function is evaluate . 
When U is declared with variable extent expressions, the value of this function 
depends on those expressions. For example, consider the following declarations:

I FIXED;DCL

DCL
DCL

S CHAR(2*I) CONTROLLED;
01 X BASED,

02 N FIXED,

If I = 10, then

SIZE (S) = 5
SIZE (X) = 12
SIZE (I) = 1

The ’*’ after the name of this function indicates 
Standard PL/I. Furthermore, a reference to 
dependent on the data representation of GCOS PL/I•

that the function is not 
this function makes a program
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The ON Cond i t i on Functions

When the PL/I processor detects an exceptional condition, it invokes an 
.0 bl .uni t. This action is, in effect, an invocation of a procedure without 
parameters; instead, the necessary data is communicated through system 
variables. These system variables are accessed by the ON condition built-in 
funct i ons.

For example, the exceptional condition KEY occurs when an attempt is made 
to input a keyed record that does not exist. To support the processing of this 
condition, the key (a character string) for which no record could be found is 
placed in a system variable provided for the purpose. The ON unit that 
processes the condition can use the built-in function ONKEY to retrieve the 
value of this system variable.

Every system variable associated with a condition is, in fact, a stack of 
variables and thus resembles a CONTROLLED variable. Each time a condition 
occurs and is signalled a new variable is allocated on each associated stack and 
its value is set. Each time the handling of a condition is complete, the most 
recent variable on each associated stack is freed and its value is lost. PL/I 
provides stacks for condition parameters because condition handling can be 
recursive; that is, a condition can occur while a previous occurrence of the 
same condition is being handled.

Before execution of a program begins, the PL/I processor allocates a 
variable for each of the system variables under discussion. This variable is 
set to a single blank character for the ONCHAR, a zero for ONCODE, and a null 
string for other ON condition functions. When an ON condition is not currently 
being handled, the associated system variables yield the values just mentioned.

The ON condition built-in functions are meaningful only in the context of 
the ON cond i t i ons themselves; these are discussed later, under "Condition 
Handling". The whole subject is relevant only to intermediate or advanced 
programming applications, where the user cannot simply make use of the default 
handling of conditions provided by PL/I.
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THE ONLOC FUNCTION

A reference to the function has the form:

ONLOC ONLOCC)

The value of this function is set whenever any condition occurs. When the 
condition is signalled, a character-string value that designates the most 
recently entered procedure block is placed on the stack associated with the 
ONLOC function. Suppose, for example, the following program is executed:

P: PROC;
DCL Y FLOAT;

INV: PROC(X) RETURNS(FLOAT);
DCL X FLOAT;
RETURN(1/X);
END;

Y = INV(O);
• • •
END;

When the division is performed, the ZERODIVIDE condition occurs and is 
signalled; and the value of the function is:

ONLOC = ”1 NV"

When no condition is being handled, the value of the function is:

ONLOC = (the nu11 string)

THE ONCODE FUNCTION

A reference to the function has the form:

ONCODE ONCODEO

The value of this function is set whenever any PL/I condition occurs. When the 
condition is signalled, a 35 —bi t integer that indicates the cause of the 
condition is placed on the stack associated with the ONCODE function. When no 
condition is being handled, the value of the function is

ONCODE = 0

Because the run-time subroutines that support the execution of PL/I programs are 
subject to modification and improvement, the list of error code values is 
subject to change and is not published in this document. Even when these codes 
are published, a program whose logic depends on a value of ONCODE may not run 
properly on other implementations of PL/I or on future versions of GCOS PL/I. 
Generally, the only valid use of the value of ONCODE is as part of an error 
message.
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THE ONKEY FUNCTION

A reference to the function has the form:

ONKEY ONKEY()

The value of this function is set whenever a keyed input/output operation is in 
progress and one of the following conditions is signalled for that operation:

TRANSMITENDFILE KEY RECORD

When one of these conditions is signalled, the key given in the input/output 
statement is placed on the stack associated with ONKEY. Consider, for example, 
the statement:

READ FILE(ALPHA) KEY(”BETA”);

Suppose that file ALPHA contains no record whose key is BETA. Then the key 
condition occurs and

ONKEY = "BETA”

When no KEY condition is being handled, the value of the function is:

ONKEY = ”” (the null string)

THE ONFIELD FUNCTION

A reference to the function has the form:

ONFIELD()ONFIELD

The value of this function is set when the NAME condition is signalled. The 
NAME condition occurs during data-direc ted stream input/output when a name is 
encountered that is not mentioned in the list in the input statement. When the 
condition is signalled, the character string just extracted from the input 
stream is placed on the ONFIELD stack. Suppose, for example, the statement

GET FlLE(SYSIN) DATA(ALPHA,BETA,GAMMA);

is executed when the input stream is

ALPHA=28.3,BETTA=61.4,GAMMA=19.2;

then the NAME condition is signalled and the value of the function is 

ONFIELD = "BETTA=61.4”

When no NAME condition is being handled, the value of the function is: 

ONFIELD = ”” (the null string)
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THE ONCHAR AND ONSOURCE FUNCTIONS

References to these functions have the forms:

ONCHAR 
ONSOURCE

ONCHAR() 
ONSOURCEC)

The value of ONSOURCE is the character string that is on the top of the stack 
associated with the ONSOURCE function. The value of ONCHAR is a single 
character, the conversion character in the character string that is on the top 
of the stack associated with the ONSOURCE function.

The ONSOURCE and ONCHAR functions are associated with the CONVERSION 
condition. The CONVERSION condition occurs when an attempt is made to convert a 
character-string value to an arithmetic or pictured value and the attempt fails 
because the given character-string value has the wrong form. The conversion 
character is defined as follows:

If the given character-string can be corrected only by changing some 
characters, then the conversion character is the leftmost character 
that must be changed in any correction of the given character-string.

If the given character-string can be corrected simply by adding some 
characters at the end, then the conversion character is the last 
character of the given character-string.

When no CONVERSION condition 
are:

is being handled, the values of the funct i ons

ONSOURCE = 
ONCHAR

As a basis for an example 
assignment statement:

X = FLOAT(Y);

Suppose that Y is a character-string

of these functions, consider the following

variable and its value is:

"-12300Z5"

When the statement is executed and an attempt is made to evaluate the FLOAT 
built-in function, the processor finds that the string "-12300Z5" is not a valid
representation of an ar i thmeti c value. When the CONVERSION condition occurs,

ONSOURCE = 
ONCHAR = "Z

Now suppose that the

"-12300E+"

"-12300Z5" 
II

value of Y i s:

When the assignment statement i s execu ted, the processor finds that the s t r i ng
is a valid beg inning for a representation of an arithmetic value; for example,
it could be corrected

ONSOURCE =

by add i ng

"-12300E+"

the character '5 ’. Therefore,

ONCHAR = "+
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Finally, suppose that the value of Y is:

”-12300+5"

Once again, the processor finds that the given character string is not a valid 
representation for an arithmetic value. A human reader might say that the E 
that separates the mantissa from the exponent is missing, so that the value of 
ONCHAR should be ! + f. However, the PL/I processor recognizes that the 
representation can be corrected by adding an I at the end to produce a 
representation of a COMPLEX value. Therefore,

ONSOURCE = "-12300+5"
ONCHAR = "5"

The pseudo-variab1es ONSOURCE and ONCHAR are described later, in the 
section on "Value Assignment".

THE ONFILE FUNCTION

A reference to this function has the form:

ONFILE ONF I LEO

The value of this function is set whenever an input/output operation is in 
progress and one of the following conditions is signalled for the operation:

CONVERSION
NAME

ENDFILE 
RECORD

ENDPAGE KEY
TRANSMIT UNDEFINEDFILE

When one of these conditions is signalled, the f i1e-pame of the file on which 
PL/I is operating is placed on the stack associated with the ONFILE function. 
For example, consider the statement:

GET FlLE(ALPHA) LIST(X);

If the hardware fails to correctly transmit the value of X, the TRANSMIT 
condition is signalled and the value of the function is:

ONFILE = "ALPHA"

Observe that the value of ONFILE is not a file value; it 
that is the identifier that designates the file value, 
conditions listed above is being handled, the value of the

is a character string
When none of the 

function is

ONFILE = (the null string)
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SECTION X

VALUE ASSIGNMENT

The assignment statement sets the value of a variable. This appears to be 
a simple action; however, two complications arise. First, the assigned value 
can have a different storage type from the target variable, and therefore an 
assignment statement sometimes requires a complicated conversion from one 
storage type to another. A thorough understanding of the rules given earlier, 
in the section on ’’Conversion of Values" is required. Second, the order in 
which the actions of assignment are performed can, in certain special cases, 
affect the outcome of the assignment. These problems are discussed later in 
this sect i on.

The description of assignment statements in this section begins with 
preliminary examples; these illustrate the rules in an informal way. Next, the 
form and interpretation of the assignment statement is defined in detail. 
Finally, the pseudo variables, which are special constructs associated with 
value assignment, are defined.

PRELIMINARY EXAMPLES OF ASSIGNMENT STATEMENTS

The following examples are given to illustrate the considerable variety of 
ways in which assignment statements can be used. Examples are given for each of 
the major data types: arithmetic, string, address, area, and array.

Arithmetic Assignment Statements

Most of the assignment statements in a 
simple. For example, consider:

typical program are short and

I = M+l;

where both of the variable names are declared FIXED. This statement evaluates 
the r i ght-hand-s ide express i on M+l and obtains an 18-bit integer. That value is 
converted to a 17-bit integer for assignment, and, if the high-order bit was 
one, the SIZE condition occurs. Finally, the converted value replaces the 
previous value of the target variable, I.

An assignment statement can have a 
still be conceptually simple. For example,

large right-hand-side expression and 
cons i der ;

Z = (X-l)**2 - (A+3*B)*( X-l) + (A-3*(B/O);

where all the variable names are declared FLOAT. This statement is programmed 
entirely in floating-point binary and does not require any conversion 
operations. It is typical of engineering and scientific applications.

10-1 DE05



String Assignment Statements

The effect of a string assignment depends on whether or not the target 
variable is VARYING. For example, consider:

SI = "ABC”;

where SI is declared CHARC5) NONVARYING. This statement sets SI to "ABCbb" 
(adding two blanks to this string) because that is the result of conversion to a 
CHARC5) NONVARYING target. In contrast, consider:

S2 = "ABC”;

where S2 is declared CHARC5) VARYING. This statement sets S2 to "ABC". If the 
assigned value is longer than the maximum size of the target, the STRINGSIZE 
condition occurs, as described earlier, in the section on "Value Conversion".

A construct called a pseudo-var i ab1e can be used as 
assignment. A frequently used pseudo-variab1e is SUBSTR. 
of a string variable to be changed. For example, consider:

the target of an 
It al lows a port ion

SUBSTR(S,3,2) = "XX";

where S is declared CHAR(8) NONVARYING. This statement sets the third and 
fourth characters of S to "XX" and leaves the other characters unchanged.

The major types of computational values are arithmetic, character string, 
and bit string. A conversion between major types is allowed, but not 
recommended, in GCOS PL/I. For example, consider:

where X is declared DEC(6,2). This statement assigns the value 0005.00 to X 
(which is correct) in both GCOS and Standard PL/I; but in GCOS PL/I, the 
compiler marks the statement with a warning. This matter is discussed earlier, 
under "Conversion Operations" in the section on "Operations".

Address Assignment Statements

The assignment of address values is an advanced feature of 
especially important in list-processing. For example, consider:

PL/I. It is

P = P->CELL.NEXT;

where P is declared POINTER and CELL is a based structure whose member NEXT is 
declared POINTER. A statement of this form can be used to advance from one 
element of a list to the next element provided, of course, that the list 
structure is suitably defined.
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Area Assignment Statements

An assignment statement can be used to copy the contents of one area 
variable into another. The effect is to copy the given area exactly as it 
appears, without any changes in the offsets or the current extent of the area. 
Consider the statement:

Al = A2;

where Al and A2 are declared AREA(IOO) and AREAC200), respectively. If the 
current extent of the AREA value of A2 is greater than 100 (the maximum value of 
the AREA variable Al), then the AREA condition occurs, as described earlier, in 
the section on "Storage Management".

Aggregate Assignment Statements

Aggregate values can be assigned to aggregate variables. For example, 
suppose two aggregate variables are declared as follows:

DCL 01 A(2),
02 XI FLOAT,
02 X2 FIXED;

DCL 01 B(3),
02 ALPHA FlXED,
02 BETA FIXED;

Then the following assignment statement can be used:

A = B(1);

Observe that this statement requires the conversion of the value of the 
right-hand-side expression from the storage type

01, 02 FIXED, 02 FIXED

to the storage type

01 DIM(2), 02 FLOAT, 02 FIXED

The order in which the four scalar values are assigned to A, or the order in 
which conversions are performed, is not defined in PL/I.
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THE FORM OF ASSIGNMENT STATEMENTS

The assignment statement has the following form:

where t is a target and £ is the r i ght-hand-s i de express ion. The form 'X, ...' 
indicates that the statement can contain either a single target or a sequence of 
targets separated by commas. A target is either a variable reference or a 
pseudo-variab1e reference, and the right-hand-side expression is any expression. 
The pseudo-variab1es are built into PL/I, and they are:

REALCref) 
IMAG(ref)
SUBSTRC ref.el,e2)
STRING(ref)
UNSPECCref)
PAGENOCref) 
ONCHARC) 
ONSOURCEC)

where ref is a variable reference appropriate to the pseudo-variable and el. and 
e2 are expressions. The third argument, e2, of the SUBSTR function can be 
omitted. The pseudo-variables are defined later in this section.

Targets

In most cases, the assignment statement has a single target, and that 
target is a variable reference. Thus:

X = (A+B**N)/N;

AC I-FCZ),PHI+2) = 0;

NAMECI).LAST = "JONES";

G(ALPHA)->TAB(K+3,M) = BETA**3;

The statements just given illustrate the use of all four kinds of variable 
reference as target: simple, subscripted, structure-qualified, and
locator-qualified. Examples of assignments with pseudo-variables as targets 
are:

SUBSTRCPLACE,I-3,4) = "QQQQ";

REALCZ) = 2.8934E0;

Examples of assignment statements with multiple targets are:

K1,K2,K3 = 0;

GAMMA, G(ALPHA)->TAB(J,RHO) = PHI;

MARK, SUBSTRCPART,4,3) = "MXT";
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THE INTERPRETATION OF ASSIGNMENT STATEMENTS

An assignment statement is interpreted as follows:

1. Evaluate Right-Hand-Side Expression. Evaluate the right-hand-side 
expression and save its value.

2. Convert Value and Store Through Target. Process each target one by 
one, starting from the leftmost and (if there is more than one target) 
proceeding to the right. For each target, convert a copy of the value 
of the right-hand-side expression to the storage type of the target 
and then assign the converted value to the target.

The assignment of the converted value depends on the nature of the target, as 
fo11ows:

If the target is a variable reference, then the previous value of the 
designated variable is replaced by the assigned value. Since the 
assigned value has been converted to the same storage type as the 
target variable, the value fits exactly into the target variable.

If the target is a pseudo-variab1e, a part of the previous value of a 
named variable is replaced or all of a built-in variable is replaced. 
The effect of assignment to a given pseudo-variable is given in the 
definition of that pseudo-variab1e, later in this section.

S.P.QQ i.a.l Res t r i ct ions

Assignment statements
These restrictio ns, together

must satisfy several
with some explanation,

rather special restrictions, 
are given here.

OVERLAPPING STRING TARGETS

Consider the following assignment statement:

where both variables are declared CHAR(500). The GCOS implementation of PL/I 
copies a string value directly from the storage for T into the storage for S 
without using any intermediate storage. This is an efficient implementation; 
however, it can be followed only if certain troublesome cases, called 
overlapping string targets, are excluded from the language. The restriction 
given here excludes those cases.
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The restriction on overlapping string targets requires the definition of 
the special str i ng target. A given target is a special string target if all of 
the following statements are true:

The given target is a variable reference or a reference to the SUBSTR 
pseudo-variable.

The given target occurs in a statement whose right-hand-side 
expression is either a scalar string reference or a reference to the 
SUBSTR built-in function. In the latter case, the first argument of 
the function is a scalar string variable reference.

The string type (CHARACTER or BIT) of 
right-hand-side expression must be the same, 
necessary.

the target and the
so that no conversion is

When a special string target designates all or part of the storage that is 
designated by the right-hand-side expression of the same statement, it is an 
over 1app i ng special string target. Such a target is invalid.

Th i s 
ass i gnment 
behind the

res t r i ct i on 
statements

restriction

is designed to 
that are of a 

is as foilows:

permit the efficient execution of 
relatively simple form. The reasoning

There are some efficient methods for executing an assignment statement 
that has a special string target, as already noted.

2. The efficient methods sometimes produce invalid 
applied to over 1appi ng special string targets.

results when they are

It is not always possible for the PL/I compiler 
a special string target that is overlapping and

to distinguish between 
one that is not.

4. Therefore, in order to permit the use of the efficient methods, the 
overlapping special string targets are excluded from PL/I.

As an example, consider the program:

P1: PROC *
DCL S CHAR(IOO) VAR INIT("ABCDEFGHI J"); 
DCL T CHAR(IOO) VAR INIT("0123U56789" ); 
SUBSTR(S,2,9) = SUBSTRCT,1,9); 
• • • 
END;

The assignment statement has a special string target that is not overlapping. 
It can be efficiently executed by assigning the first character of I to the 
second character position of S, the second character of T to the third character 
position of S, and so on. The result is "A0123U5678", which is correct. 
Suppose, however, that the following assignment is used instead:

SUBSTR(T,2,9 ) = SUBSTR(T,1,9 );
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This assignment statement has an overlapping special string target and is 
invalid. If the statement were executed by the efficient method just described, 
the result could be ”0012245668” instead of the presumably expected 
"0012345678”. Therefore, to accomplish the indicated assignment, the programmer 
must write:

Tl = SUBSTRCT,1,9);
SUBSTRCT,2,9) = Tl;

where Tl is a suitably declared string variable name.

AREA ASSIGNMENTS

The application of an assignment statement to AREA values is restricted to 
a statement of the following form:

Each of the targets is a reference to a scalar AREA variable 
and the right-hand-side expression is a reference to a 
scalar AREA variable or function.

Thus an AREA value cannot be assigned as part of an aggregate value.

The Order of Interpretation

A program must not depend on the order of the steps of the interpretation 
unless that order is explicitly stated in the definition of the language. 
Programs that depend on additional assumptions about ordering are invalid. The 
assignment statement is a construct in which this rule is especially important.

When an assignment statement assigns a scalar value to a single target, and 
when the right-hand-side expression does not invoke a function that has side 
effects, then no problems of ordering can arise. Most assignment statements are 
of this convenient kind; however, those that are not must be given special 
attent ion.

Each expression in an assignment statement is 
ordering rules for expressions, as given 
"Expressions”. In addition, the interpre tation of 
subject to the following ordering rules:

evaluated according to the 
earlier in the section on 
an assignment statement is

• The right-hand-side expression is evaluated before any value is 
assigned to a target.

• When an assignment statement has more than one target, the assignment 
of a value to a given target occurs before any expression (such as a 
subscript) in a subsequent target is evaluated.

Aside from these rules, the order of interpretation of an assignment statement 
i s undef i ned.
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The first of the ordering rules just given states that the right-hand 
expression is evaluated before a value is assigned to any target. That ordering 
can be important when an array value is assigned. Consider, for example, the 
s tatement:

A = A(2)*B;

where both A and B are declared DIM(3) FLOAT. Except for the ordering rule just 
given, one might suppose that an equivalent to this statement would be:

This interpretation is not only incorrect but also undesirable, since it uses 
the old value of A(2) as the multiplier for the first two elements of B and the 
new value for the last. Because of the ordering requirement, the correct 
interpretation uses the old value of A(2) as the multiplier for all elements of 
B.

The definition of the assignment statement does not place a restriction on 
the time at which the location of a target variable begins. That is, although 
the assignment of a value to the target cannot occur until the evaluation of the 
right-hand expression is complete, there is no such restriction on the location 
of the target variable. In this connection, consider the statement:

A(I) = F(X);

where F is the following user-defined procedure:

F: PROC(W) RETURNS(FLOAT);
DCL W FLOAT; 
• • •
I = 1+1;

END;

The location of the target in the given assignment statement depends on whether 
the subscript in A(I) is evaluated before or after the assignment 1=1+1 is 
executed. Therefore, the given assignment statement is ambiguous and is 
i nvalid.

The two examples just given are typical, but they do not exhaust the set of 
interesting examples that could be given on the subject of ordering. The 
designers of PL/I specified ordering where they believed it was called for by 
common sense and conventional notation; and they left it out where it would have 
been an arbitrary rule. When the programmer is in doubt, he should assume that 
the ordering is unspecified; and then he should take some measure to provide a 
positive ordering, such as breaking a statement into a sequence of statements.
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PSEUDO-VARIABLES

Some of the built-in functions can be used as targets; in that context, 
they are called ps.eudo - va r i ab les, not built-in function references. A 
pseudo-variab1e can be defined, for valid arguments, in terms of its 
corresponding built-in function reference. Consider the assignment statement

REAL(Z) = REAL(Z);

Prov i ded that Z 
built-in function, 
express ion yields 
same value back as 
s i mi1 ar manner.

is a valid argument for the REAL pseudo-variab1e and the REAL 
this statement changes nothing. That is, the right-hand 
the real part of Z, and then the pseudo-variab1e puts that 

the real part of Z. All of the pseudo-variab1es behave in a

A pseudo-variab1e can be used in only three contexts: as a target in an 
assignment statement (described in this section), as the target in a DO 
statement (as described later, in the section on ’’Program Flow”), and as a 
target in a 1ist-directed or edit-direc ted GET statement (as described later, in 
the section on ’’Stream I nput/Out pu t”). In each of these cases, a value is 
assigned to the pseudo-variab1e and the interpretation of the pseudo-variab1e 
then causes a value to be assigned to storage.

A pseudo-variab1e name should be declared BUILTIN. Observe that a given 
name can be used as both a pseudo-variab1e name and a built-in function name in 
the same block; the context of each reference determines whether it is a 
pseudo-variable or a built-in function reference.

A complete and independent definition for each pseudo-variab1e is given in 
what follows. Each definition gives the storage type to which the assigned 
value is converted, and then describes what the pseudo-variab1e does with that 
value.

The REAL and I MAG Pseudo-Variabl es

As pseudo-variables, the references have the same forms as the built-in 
function references, namely:

REAL(Z)
IMAG(Z)

The value assigned to the pseudo-variab1e is converted to the storage type of Z 
except that the mode is REAL; then the converted value is assigned to the rea1 
pa r t or imagi nary part, respectively, of Z. For example, suppose the following 
declaration applies:

DCL ALPHA COMPLEX FLOAT DEC(5);

and suppose ALPHA has the value:

+5.0000E0-7.5000E0I
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Then the assignment statement

REAL(ALPHA) = -8.92;

sets the given value to -8.9200E0-7.5000E0I, while the assignment statement: 

IMAG(ALPHA) = 0;

sets the given value to +5.0000E0+0.OOOOEOI.

The SUBSTR Function as a Pseudo-Variab1e

As a pseudo-variable, the reference has the same forms as the built-in 
function reference, namely:

SUBSTRCS,I,J) SUBSTRCS,I)

where S must be a string variable reference and I and J must be expressions 
whose values can be converted to 24-bit integers. The arguments can be 
aggregates; however, if I or J is an aggregate, then its aggregate type must be 
suitable for conversion to the aggregate type of S.

Consider, first, the interpretation of the pseudo-variab1e when all 
arguments are scalars. The data type of the pseudo-variable has the string type 
of S (CHARACTER or BIT), but has maximum length J and the attribute NONVARYING. 
For example, consider:

SUBSTRCALPHA,3,5) = "ABC";

where ALPHA is declared CHAR(IO) VARYING. Here the data type of the target is 
CHAR(5) NONVARYING. The converted value, "ABCbb", replaces that substring of 
ALPHA that begins with the third character of ALPHA and is five characters long. 
If the assigned value had been more than five characters long, the STRINGSIZE 
condition would have occurred.

There are restrictions on the pseudo-variab1e. First, J must be zero or 
positive and I and J must specify a substring that lies entirely within the 
limits of the current value of the variable designated by S. Thus in the 
example given above, the current value of ALPHA must be at least seven 
characters long. When this restriction is not met, the STRINGRANGE condition 
occurs. Second, if S is a VARYING string, a value must be assigned to it before 
it appears in a SUBSTR pseudo-variable; otherwise, the current length of S would 
be undef i ned.

If any of the arguments of the pseudo-variab1e are aggregates, they are all 
converted to the aggregate type of S, and this aggregate, type becomes the 
aggregate type of the pseudo-variable. The value of the right-hand expression 
is, in turn, promoted to this aggregate type before assignment. After 
conversion, the independent components are individually assigned through the 
SUBSTR pseudo-variab1e according to the rules for scalars.
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The STRING Pseudo-Variab1e

As a pseudo-variab1e, the reference has the same form as the built-in 
function reference, namely:

STRING(U)

where U must designate one of the following:

A scalar string variable that is NONVARYING and ALIGNED.

An aggregate variable whose components 
type (either CHARACTER or BIT, but not 
and are all NONVARYING and UNALIGNED.

are all string variables of one 
a mixture of CHARACTER and BIT)

Such a variable is represented in storage as an uninterrupted sequence of 
characters or bits in a way that is independent of its aggregate type. Suppose 
the total number of characters or bits accommodated by the variable designated 
by U is m. Then the pseudo-variab1e is interpreted as follows:

the value assigned to the pseudo-variab1e 
or CHAR(m), depending on the type of U.

i s converted to

Second, if U is a scalar, the converted value is assigned to it 
directly; otherwise, the converted value is assigned in such a way 
that the concatenation of the components of the aggregate variable U 
are identical to the given converted value.

For example, consider the use of this pseudo-variab1e in the following program:

P: PRO C ■
DCL 01 PART UNALIGNED, 

02 CODE,
03 SERIAL CHAR(6), 
03 TYPE CHAR(2),

02 DESCRIP CHAR(10);

STRING(PART) = "310-A6XXSI DE";
STRING(CODE) = "680-A3"; 
• • • 
END;

The effect of the two assignment statements on the value of PART is as follows:

PART.CODE.SERI AL
PART.CODE.TYPE 
PART.DESCRIP

first ass i gnment

"310-A6"
"XX"
"SI DEizH6|zWI6"

second assignment

"680-A3"

"S I DEb$$t6$$"
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The UNSPEC Pseudo-Variab1e

As a pseudo-variab1e, the reference has the same form as the built-in
func t i on reference, namely:

UNSPEC(U)

Suppose that the result of the built-in function reference UNSPEC(U) would yield 
a bit string of length m. (The interpretation of that built-in function 
reference is given under ’’Conversion Operations" in the section on 
"Operations".) The pseudo-variab1e is interpreted as follows:

First, the value assigned to the pseudo-variab1e is converted to 
BIT(m).

Second/ the converted value is assigned to U in a way that the 
function reference UNSPEC(U) yields the given converted value.

A key point is that/ for any variable reference X, the assignment statement:

UNSPEC(X) = UNSPEC(X);

leaves the value of X unchanged. It then follows that the statements:

S = UNSPEC(X);
X = ... ;
UNSPEC(X) = S;

save the value of X in S, change the value of X, and then restore the value of 
X.

The UNSPEC pseudo-variab1e is a way of interpreting the contents of raw
storage (a sequence of bits) as a PL/I 
function, it constitutes an escape 
allows direct access to the storage of

value. Together with the UNSPEC built-in 
from the machine-independence of PL/I and
values in GCOS words. Suppose, for

example, it is necessary to write a special PL/I procedure for converting a 
FIXED value to a FLOAT value. In order to write such a procedure, it might be 
necessary to prepare the mantissa and the exponent separately and then combine 
them into a single FLOAT value by means of the UNSPEC pseudo-variab1e.

The PAGENQ Pseudo-Variab1e

As a pseudo-variable, the reference has the same form as the built-in 
function reference, namely:

PAGENO(F)

where F must yield a scalar file value that has the PRINT attribute. The value 
assigned to the pseudo-variab1e is converted to a 35-bit integer. For example, 
suppose ALPHA is declared as a file-name constant. Then the assignment 
s ta temen t:

PAGENOCALPHA) = 100;

sets the page number counter for file ALPHA to 100.
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The ONCHAR and ONSOURCE Pseudo-Variab1es

As pseudo-variables, the references have the same forms as the built-in 
function references, namely:

ONSOURCE ONSOURCEC)
ONCHAR ONCHARO

The value assigned to ONSOURCE is converted (if necessary) to a character-string 
value and then replaces the value currently at the top of the stack that is 
associated with the ONSOURCE built-in function. The value assigned to ONCHAR is 
converted (if necessary) to a CHAR(l) value and then replaces the conversion 
cha racter (as defined below) in the character-string value currently at the top 
of the stack associated with the ONSOURCE built-in function.

The ONSOURCE and ONCHAR pseudo-variab1es are associated with the CONVERSION 
condition. The CONVERSION condition occurs when an attempt is made to convert a 
character-string value or pictured value to an arithmetic or bit-string value 
and the attempt fails because the given string has the wrong form. The 
conversion character is the leftmost character that must be changed as part of 
the correction of the given character-string value. A more detailed discussion 
of these matters is given earlier, under ’’The ON Condition Functions” in the 
section on ’’Operations”.

As an example of the use of ONCHAR as both a pseudo-variab1e and a built-in 
function, consider the following program:

P; PROC;
DCL (SYSIN,SYSPRINT) FlLE;
DCL X FLOAT;
DCL CONV COND;
DCL ONCHAR BUILTIN;
ON CONV

BEGIN
PUT SKIP LISTCERROR IN INPUT");
IF 0NCHAR= ”1” THEN ONCHAR = ”1”;

ELSE IF 0NCHAR= ”0” THEN ONCHAR = "0";
ELSE SIGNAL ERROR;

END;
GET LIST(X);
PUT SKIP LIST(X**2);
END;

This program computes the square of a given number. The ON statement provides 
the program with a primitive form of error recovery: when the input value has 
either of the letters I or 0, the program prints a warning message and assumes 
that the corresponding digit was intended.

Suppose that the following input is supplied to this program:

I 23EI
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The conversion of this input (which is a character-string value) for assignment 
to X (which requires a FLOAT value) proceeds as follows:

The first attempt at conversion fails. The first character, which is 
the letter I, is the conversion character. The CONVERSION condition 
is signalled. The ON unit prints a warning and replaces the 
conversion character with the digit 1. Then the PL/I processor again 
attempts the conversion.

The second attempt also fails. The fifth character 
I, and is handled in the same way as the first I.

is also the letter

3. The th i rd attempt 
"123E1".

at conversion succeeds because the given string i s

Although this example shows how the ONCHAR pseudo-variab1e works, it is a simple 
example of recovery. A more sophisticated recovery procedure would use the 
ONSOURCE built-in function to obtain the entire incorrect string, would analyze 
that string and make appropriate changes, and would use the ONSOURCE 
pseudo-variab1e to replace the entire incorrect string with the corrected 
version.
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SECTION XI

PROGRAM FLOW

As a program is executed, the PL/I interpreter passes from one statement to 
another; this part of program execution is the flow of control. There are seven 
kinds of flow of control in PL/I, as follows:

Sequential flow is the execution of statements in the order in which 
they appear in the program. This kind of flow of control is used 
wherever some other kind is not explicitly called for.

Cond i t i ona1 flow uses a test of current data values to determine 
whether or not a statement is executed. The IF statement is used for 
this purpose. A set of IF statements can be nested, one within the 
other, so it is possible to program a complicated case analysis using 
only IF statements.

Iterative flow uses various conventions to execute a group of 
statements repeatedly. The DO statement is used to control the 
iteration. An index can be associated with the iteration.

Transfer of control sends control to a specified statement. The GOTO 
statement is used for this purpose. Because PL/I has both arrays of 
LABEL constants and unlimited LABEL variables, a rather general 
computation can be used to obtain the destination of the transfer.

Block execution applies to a BEGIN block. A BEGIN block is used to 
declare variables in a restricted scope.

Procedure Invocation executes a block of statements as a closed 
subroutine. The CALL statement or the function reference is used for 
procedure invocation. Provision is made for the transmission of 
arguments by either value or address, and procedures can be invoked 
recu r s i ve1y.

Condi t ion hand 1i ng is used to process exceptional conditions that can 
occur during program execution, such as a division by zero or a 
transmission failure during input. The ON, REVERT, and SIGNAL 
statements are used for this purpose.

The first five ki nds 
two k i nds requ i re 
sections, ’’Procedure

of flow of control are described in this section. The last 
separate treatment and are described in the subsequent 
Invocation” and "Condition Handling”.
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SEQUENTIAL EXECUTION

When execution is sequent!alt statements are executed in the order in.which 
they appear. However, when control reaches the end of a procedure, there is no 
!,next statement” in the sequence; so the PL/1 interpreter acts as if the next 
statement i s

RETURN;

and thus returns to the point at which the procedure was invoked.

The following constructs cause no action when they are encountered during 
sequential execution:

PROCEDURE blocks 
FORMAT statements 
DECLARE and DEFAULT statements

Some of these constructs (PROCEDURE blocks and FORMAT statements) cause action 
only when they are invoked by a proper form of reference. The remaining 
constructs never cause an action; they are present only to supply declaration 
information.

As an example of sequential execution, consider the following program:

p . p pQ Q •
DCL (SYS IN,SYSPRI NT) FlLE;
DCL (A,B,C) FLOAT;

SQ: PROC(X,Y) RETURNS(FLOAT);
DCL (X,Y,Z) FLOAT;
Z = (X**2 + 5*Y)/X;
RETURN(Z);
END;
GET LIST(A,B);
C = 2*SQ(A,B);
PUT SKIP LIST( A,B,C);
END;

Execution of the program is summarized as follows:

1. The PROCEDURE statement, the two DECLARE statements, and the internal 
PROCEDURE block are executed in sequence. The sequential execution of 
these constructs causes no action.

2. The input statement is executed and gets values for A and B from the 
input stream.

3. The assignment statement is executed. As part of its execution, it 
invokes the procedure SQ; during that invocation, the statements in 
that procedure are executed sequentially.

U. The output statement is executed and prints the results.

5. Because the end of the external procedure has been reached, PL/I
assumes a RETURN statement and returns to the command that invoked the 
external procedure.
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THE IF STATEMENT

An IF statement has one of the following forms:

I F _t THEN cl ELSE c2

I F Jt THEN cl

where _t is the test and cl and c2 are the consequences. The test is usually a 
relational expression, whose value is ”1’’B or "0"B (that is, true or false). 
Each consequence is usually a single statement.

An IF statement that has
fo11ows:

an ELSE clause (the first form), is i n te r pre ted as

1. Evaluate the test.

2. If the test value is true, then execute 
otherwise execute the second consequence.

the first consequence;

Consider, for example:

IF X >= 2*B
THEN Z = SQRT(X-2*B);
ELSE CALL ERR3(X);

Here, the test is the relational expression X>=2*B, the first consequence is the 
assignment ’'’’Z=SQRT(X-2*B);’’’’, and the second consequence is the statement 
’’’’CALL ERR3(X);’’’’. This IF statement executes the assignment statement if 
the argument of the square root is non-negative; otherwise, it calls an error 
rout i ne.

the

IF I<0 THEN I=0;

this statement sets to zero ori sDepending on whether 
takes no further action.

An IF statement without an ELSE clause takes no action when 
est is false. Consider, for example:

An IF statement without a THEN clause is not part of the language. 
However, a specification that requires an omitted THEN clause can easily be 
converted to one that requires an omitted ELSE clause; and the resulting 
uniformity is beneficial. For example, consider the specification:

If X=0 is true, then do nothing; otherwise, execute the assignment 
s ta temen t Y = 1/X;.

This specification can be converted to a suitable form by negating the test and 
exchanging the consequences. The result is:

If XA= 0 is true, then execute the assignment statement ’Y=l/X;’; 
otherwise, do nothing.

The specification can now be written in PL/I, as follows:

IF XA= 0 THEN Y = 1/X;
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The Test in an IF Statement

The test in an IF statement can be any expression that yields a scalar 
bit-string value. Usually, the bit-string value is of length one, but any 
length is allowed. If any bit of the test value is one, then the test is true; 
otherwise, the test is false.

The test can specify a lengthy computation; for example:

IF ABS(X) = 0
& SQRT(U**2+V**2)<F(R+1)
& (SW1=5 ! SW1=9)

THEN CALL R1(Z);
ELSE CALL R2(Z);

Here the test is a complicated bit-string expression; furthermore, the test 
contains the reference F(R+1), which (it is assumed) is a reference to a 
user-defined function and which can require considerable computation in itself. 
When the computation is complete, however, the final result is simply "1”B or 
"0"B.

Although the definition of the test in an IF statement permits any 
expression that yields a bit-string value, an expression that does not yield a 
BIT(l) NONVARYING value should be avoided. A multiple-bit test can give 
unexpected results; for example, consider the following statements:

IF B THEN CALL Rl; ELSE CALL R2;

IF aB THEN CALL R2; ELSE CALL Rl;

It is natural to expect these statements be equivalent to one another; however, 
they are equivalent only if the value of B is a string of zeros only or of ones 
only, and that can be assured only if B is BIT(l) NONVARYING. Suppose, for 
example, that B is declared BIT(2) and the assignment statement

B = ”01,,B;

has been executed. In the first statement, the test is true, because it contains 
a one bit and therefore Rl is called. In the second statement, the value of the 
test is ,,10,,B and so it is once again true and R2 is called. Thus the 
statements are not equivalent when B is declared BlT(2).

The Consequences in an IF Statement

Each consequence in an IF statement must be an executable unit. The 
constructs that are executable units are:

• The DO group; that is, a DO statement followed by a sequence of 
statements followed by an END statement

• The BEGIN block; that is, a BEGIN statement followed by a sequence of 
statements followed by an END statement
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• The independent statement; 
statemen t:

storage management: 

ass i gnment:

flow of contro 1 :

procedure invocation: 

condition handling: 

i npu t/ou tput:

stream input/output:

record input/output:

The definition just given allows 
statement as a consequence. Those n.

that is, one of the following kinds of

ALLOCATE and FREE

the assignment statement

IFz GOTO, and the null statement

CALL and RETURN

ON, REVERT, and SIGNAL

OPEN and CLOSE

GET and PUT

READ, WRITE, DELETE, REWRITE and LOCATE

the use of nearly any group, block, or 
a 11 owed are:

Constructs that.cause no action when encountered through sequential 
flow of control; for example, a PROCEDURE block, a FORMAT statement, 
or a DECLARE statement.

Statements that are not complete in themselves but must be part of a 
larger construct; for example, the DO statement, which must be part of 
a DO group, or an ENTRY statement, which must be part of a PROCEDURE 
block.

X=0 & Y<2 THEN GOTO L3;
DO

statement 
writing:

the use
For example

a GOTOThe broad definition of the consequence means th 
transfer around statements is unnecessary.

0(1) = 0;
END;

one should write:

I FA (X =0 & Y<2) THEN
DO I = 1 TO N;

A(I) = B(I)*C(I) ;
Q(I) = 0;
END;

This form avoids the use of a label prefix; furthermore, its syn tact i c structure 
corresponds to the 1ogi ca1 structure of the computation.

Two of the constructs that can be used as consequences are of particular 
significance. They are the non-iterative DO group and the IF statement itself; 
and they are given special attention in the following paragraphs.
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THE NON-ITERATIVE DO GROUP AS A CONSEQUENCE

A non-iterative DO statement is one that has no WHILE option or index. A 
non-iterative DO group begins with a non-iterative DO statement, and its sole 
purpose in the language is to gather together two or more statements so that 
they can be treated as a single consequence in an IF statement. Consider, 
first, the following two program fragments:

IF X=0 THEN Z = l; CALL Q(ALPHA);

IF X=0 THEN DO; Z=l; CALL Q(ALPHA); END;

These program fragments have different meanings. The first fragment is an IF 
statement fol lowed by a CALL statement; and the two statements are executed 
independently, one after another. The second fragment is an IF statement whose 
consequence is a non-iterative DO group; and the entire DO group Is executed or 
not depending on whether the value of X is zero or not.

Another example of the use of a non-iterative DO group is:

IF A = B
THEN DO;

ALPHA = F(3,A-2) - F(3,2*B);
BETA = G(0);
GAMMA = 4;
END;

ELSE DO;
ALPHA = F(3*(A-B)+1,2*(A-1)-B) - F(3,2*B);
BETA = G((A-B)/2);
GAMMA = H(2*(A-B)+U);
END;

Provided such statements are laid out on the page in a clear and uniform way, 
they are easy to read and understand.

THE IF STATEMENT AS A CONSEQUENCE

As a case of particular interest, the consequence of an IF statement can, 
itself, be an IF statement; that is, IF statements can be nest_ed. There is no 
limit to the depth of this nesting, and it is not uncommon for nesting to have 
three 1 eve 1s.

Suppose that 
spec i f i ca t i on of a

the following 
program:

case analys i s is given as part of the

Expression for Z

X>0

X=0 & Y>0

X=0 & Y =0

X = 0 & Y<0

X<0 & Y>=0

X<0 & Y<0

ATAN(Y/X)

PI /2

(undef i ned)

-PI/2

ATAN(Y/X)+PI

ATAN(Y/X)-PI
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This table gives five different expressions for Z, depending on the values of X 
and Y; it also shows the range of values for which Z is not defined. The case 
analysis can be programmed wi thou t nesting as follows:

X>0 
X = 0 
x=o 
x=o 
X<0 
X<0

THEN Z = ATAN(Y/X);
& Y>0 THEN Z = PI/2;
& Y=0 THEN SIGNAL ERROR;
& Y<0 THEN Z = -PI/2;
& Y> = 0 THEN Z = ATAN(Y/X)+PI;
& Y<0 THEN Z = ATAN(Y/X)-PI;

This version is readable but not efficient. There are 11 relational expressions 
in the program fragment, and every one of them is evaluated every time the 
fragment is executed.

An efficient programming of the case analysis given in the table is:

IF X>0
THEN Z = ATANCY/X);
ELSE IF X=0

THEN IF Y>0
THEN Z = PI/2;
ELSE IF Y =0

THEN SIGNAL ERROR;
ELSE Z = -PI/2;

ELSE IF Y>=0
THEN Z = ATAN(Y/X)+PI;
ELSE Z = ATAN(Y/X)-PI ;

There are five relational expressions in this version (instead of 11); and, if 
the cases occurred with equal frequency, an average execution of the program 
fragment would require the evaluation of three relational expressions (instead 
of 11).

The Dangling ELSE Clause

The omission
IF statements can

of an ELSE clause in an IF statement that is part of a nest of 
produce confusion. Consider the following statement:

IF X<0 THEN IF A<0 THEN Y=A/X; ELSE Y=0;

Does the ELSE clause go with the entire statement (so that it is executed when 
X<0 is false) or does it go with the nested IF statement (so that it is executed 
when X<0 is true and A<0 is false). Because the answer to this question is not 
obvious, ELSE Y=0; is called a "dangling ELSE clause".

The rules of PL/1 supply the answer: an ELSE clause is always associated 
with the sma11es t possible IF statement. Therefore, the ELSE clause in the 
example goes with the nested IF statement, and the correct layout for the 
s ta temen t i s:

IF X<0
THEN IF A<0

THEN Y=A/X;
ELSE Y=0;
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The problem with the dangling ELSE 
clause to be associated with the entire 
can occur:

arises when a programmer wants the ELSE 
statement. Then either of the following

1. The programmer forgets the rules and writes:

IF X<0
THEN IF A<0

THEN Y=A/X;
ELSE Y=0;

This formatting is wrong, but, unfortunately, it looks reasonable.

2. The programmer remembers the rules and writes:

I F X<0
THEN DO;

IF A<0 THEN Y=A/X;
END;

ELSE Y=0;

This version is correct but it requires the introduction of a DO 
group.

A general solution to this problem is to use an ELSE clause with ever y IF 
statement in a nest of IF statements. When there is no action for the ELSE 
clause to perform, a nu11 stat emen t can be used as the consequence. A nul1 
statement is the single character and its execution causes no action.

Wi th this approach 
interpretations clear.

in mind, the example can be written to make both 
To obtain the first interpretation, write:

I F X<0
THEN IF A<0

THEN Y=A/X;
ELSE Y=0;

ELSE;

To obtain the second interpretation, write;

I F X<0
THEN IF A<0

THEN Y=A/X;
ELSE;

ELSE Y=0;

THE DO GROUP

There are three kinds of DO group:

iterative DO without index
iterative DO with index
non-iterative DO

A DO group gathers together a sequence of statements for execution as a single 
unit. This gathering together is the only purpose of a non-iterative DO group. 
An iterative DO group does more: it executes the statements that are gathered 
together repeatedly, and is used to program loops. Every DO group, iterative or 
not, eliminates at least one GOTO statement from a program, and the result, in 
most cases, is an important contribution to the clarity of the program.
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The general form of a DO group is

DO ;
ss
END;

where s_s is the body of the group. The body is a sequence of any number of 
statements. The notation ’DO is used to indicate that, at this point in 
the discussion, the details of the DO statement are being left out; details are 
given later, as each kind of DO group is described. Although label prefixes are 
not shown above, the END statement can be preceded by one or more label 
prefixes, and can be the destination of a transfer of control.

A transfer of control from a GOTO statement that is outside an iterative DO 
group to a statement that is inside the group is not valid. The only way to 
enter an iterative DO group is by flowing into or transferring to the DO 
statement at the beginning of the group.

The Iterative DO without Index

An iterative DO group without an index has the form

DO WHI LE(_t) ;
ss
END;

where _t is the test and ss is the body of the DO group. The test is defined in
the same way as the test in an IF statement; that is, it must yield a scalar,
bit-string value. The test is true if at least one bit is one and is fa 1 se
otherwise. The use of a test bit-string with length other than one is not
recommended. When this recommendation is followed, the value of the test is 
"T’B or ”0”B.

The iterative DO group without an index executes the body of the group 
repeatedly while the value of the test is true. The detailed interpretation is:

1. Evaluate the test.

2. If the tesfc»value is false, execution

3. Execute the statements of the body of 
the first statement of the body and 
is execu ted.

4. Go to Step 1.

is complete. Otherwise, 

the group; that is, start with 
continue until the END statement

The iterated DO group without index can be used to write the most primitive 
kind of loop: one that appears to go on forever. In practice, such loops are 
often required. Consider, for example, the program:

P: PROC;
DCL (SYS IN,SYSPRINT) FILE;
DCL X FLOAT;
DO WHI LECr'B) ;

GET LIST(X);
PUT SKIP LIST(SQRT( X) ) ;
END;

END;
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This program turns the computer into a calculator of square roots; it runs until 
the input stream is exhausted. The DO statement shown here is used wherever the 
programmer must design his own loop control rather than using one of the methods 
of control provided by PL/i.

The iterative DO group without an index is well suited to control of the 
computation of a mathematical approximation. Suppose a quantity, Y(X), must be 
computed for a given value of X. The function Y is not given as a formula; 
instead, the following user-defined functions are available for use in the 
progr am:

I N I Tl AL__GUESS( X) which gives the first approximation for Y(X) in 
terms of the given X

BETTER_GUESS(X,0LDY) which gives the (i)th approximation for Y(X) in 
terms of X and the (i-l)th approximation, OLDY

The following statements compute successive approximations to Y until two 
successive approximations differ by no more than one ten-thousand th of the value 
of the current approximation:

OLDY = INITIAL_GUESS(X);
NEWY = BETTER„GUESS(X, OLDY);
DO W’H I LE( ABSC NEWY-OLDY) > . 000 1EO*ABS( NEWY )) ;

OLDY = NEWY;
NEWY = BETTER_GUESS(X, OLDY) ;
END; >

When this program fragment is written without the benefit of the DO group, it 
is:

OLDY = INITIAL_GUESS(X) ;
NEWY = BETTER_GUESS(X,OLDY) ;

LOOP: IF A(ABS(NEWY-OLDY) > .0001EO*ABS(NEWY))
THEN GOTO DONE;

OLDY = NEWY;
NEWY = BETTER—GUESS(X,0LDY);
GOTO LOOP;

DONE:

This version requires two GOTO statements and their accompanying label prefixes, 
it makes details explicit but obscures the general intent of the programmer.

The iterative DO with index

An iterative DO group with an index has the form:

DO 1 = c 1 ;
ss
END;

where 1 is the i ndex, cl is the control list and ss is the body of the group. 
The index is usually a simple reference to a scalar, but other possibilities are 
described later. The control list is a sequence of controls separated by 
commas.
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Execution of an iterative DO group with an index is divided into phases. 
The first control in the control sequence governs the first phase, the second 
control governs the second phase, and so on. Consider the following DO group:

DO I = 1 BY 2 TO 5, 13;
ACS) = B( I ) ;
END;

In this example, the control list consists of two controls. The first phase of 
execution is governed by the control 1 BY 2 TO 5 and executes the body of the 
group three times. The second phase is governed by the control 13 and executes 
the body once. The DO group is equivalent to

A( 13) = B( 13) ;

There are three kinds of con t ro1s, as foilows:

The single-value control
The REPEAT control
The FORTRAN control

Detailed descriptions of these controls follow, 
different from one another, but they have the WHILE 
allows a control phase be cut short when the test in

The controls are 
option in common, 

the option is false.

THE SINGLE-VALUE CONTROL

The single-value control has the form:

e WHILE(X)

where e. is an expression and _t is the test. The expression must yield a value 
suitable for assignment to the index. The test is defined as in an IF 
statement. The WHILE(_t) option can be omitted.

A single-value control can be used to supply an index value for a 
execution of a DO group. The detailed interpretation is:

si ng1e

1. Execute the assignment statement

i — e;

2. If the WHILE option is present, evaluate the test. If the test value 
is false, then exit from this phase.

3. Execute the statements of the body of the DO group; that is, start 
with the first statement and continue until the END statement has been 
execu ted e

4. Exit from this phase.
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The DO group in the following program has three controls, each a 
single-value control:

P: PROC;
DCL SYSPRINT FlLE;
DCL S CHAR(20) VAR;
DO S = "RED", "YELLOW", "BLUE"; 

ni!T ei/in i I CT/ II TU c nA I CiD I ” I Igl • ” . 11 ) ;PUT SKIP LISTCTHE COLOR IS 
END;

END;

The program prints:

IS RED.
IS YELLOW.
IS BLUE.

THE COLOR
THE COLOR
THE COLOR

THE REPEAT CONTROL

The REPEAT control has the form:

el REPEAT e2 WHILE(±)

where el and e2 are expressions and X is the test. The expressions must yield 
values suitable for assignment to the index. The test is defined as in the IF 
statement. The WHILE(X) option can be omitted.

A REPEAT control has one expression to supply the value for the first 
execution of the body of the group and a second expression for subsequent 
executions. The detailed interpretation is:

1. If this is the first execution of this step (Step 1.) in the current 
phase, then execute the assignment:

i = el;

Otherwise, execute the assignment:

1 = e2;

2. If the WHILE option is present, evaluate the test. If the test is 
false, then exit from this phase.

3. Execute the statements of the body of the DO group; that is, start 
with the first statement.and continue until the END statement has been 
executed.

A. Go to Step 1.

The following program fragment prints all of the powers of two that are 
between 1 and 100:

DO I = 1 REPEAT 2*1 WHILE(I<100) ;
PUT LIST(I); 
END;
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The DO group is equivalent to:

LOOP:

DONE:

IF A(I<100) THEN GOTO DONE;
PUT L I ST( I );
I =2*1;
GOTO LOOP;

The REPEAT control is especially useful for searching a linked list. 
Suppose the array that holds the list is declared as follows:

DCL 01 CELLC500),
02 CODE CHARC6),
02 CUSTOMER CHARC30),
02 LINK FIXEDC9) ;

Suppose that when this array is in use:

• CELL(l) is the first member of the list.

• If CELL( I ) is the (k) th member of the list, then CELL(CELL.LINK(I)) is 
the (k+1)th member of the list.

• If CELL(I) is the last member of the list, then CELL.LINK(I) is zero.

Consider the following DO group:

DO I = 1 REPEAT CELL.LINKCI) WHILECI A= 0);
IF CELL.CODEC I) = GIVEN_CODE THEN GOTO FOUND;
END;

GOTO NOT FOUND;

These statements search the list for the first member that has a CELL.CODE that 
is identical to that contained in GIVEN_CODE.

THE FORTRAN CONTROL

The FORTRAN control has one of the forms:

el BY e2 TO e3 WHI LE(_t) 

el TO e3 BY e2 WHI LE(_t)

where el is the ini t i al i zat i on, e2 is the i ncremen t, e3 is the 1 i mi t, and _t is 
the test. The expressions are subject to the following restrictions, which 
reflect the uses to which the expressions are put:

• The initialization must be suitable for assignment to the index.

• The increment must be a suitable operand for the addition operation.

• The limit must be a suitable operand for the < operator.

The test is defined as in the IF statement. The WHI LE(_t) option can be omitted. 
Either the BY e2 clause or the TO e3 clause can be omitted, but not both.
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A FORTRAN control is often used to supply a sequence of index values that 
is an arithmetic progression; indeed, in many cases, it is used to obtain the 
sequence of the first n. integers:

1, 2, . . ., n

Although such uses are simple, the full interpretation of the control is 
complicated. The complexity results from the concern of the designers for 
efficiency; specifically, from the decision to evaluate the expressions 
associated with the i ndex, the init i a 1i za t i on, the increment, and the limit only 
once during a phase.

The detailed inter pretation of the FORTRAN control is:

1. Prepare for execution of the loop by performing the following actions 
i n any order:

a. Determine the location of the storage unit designated by 1 (the 
index of the group). (In order to do this, any expressions in j_, 
such as subscript expressions, must be evaluated). Save the 
location of the storage unit, and wherever J_ appears in these 
steps, use the saved location rather than re-evaluating the 
express ions i n J_.

b. If the BY e2 clause is present, evaluate e2 and save the value. 
Use the saved value wherever e2 appears in these steps.

c. If the TO e3 clause is present, evaluate e3 and save the value. 
Use the saved value wherever e3 appears in these steps.

2. If this is the first execution of this step (Step 2) in the current 
phase, then execute the statement:

_L = £1;

Otherwise, execute one of the following:

i 

•

= j_ + e2;

= JL + 1 /

( i f the

( i f the

BY e2 clause is present)

BY e2 clause i s absent)

3. 1 f the WHILE o p t i on i s present, evaluate the test. If the test I s
fal se, then ex i t f rom th i s phase «

4 . 1 f the TO e3 clause is present, test the value of _L aga i ns t el as
follows: If the BY e2 clause is not present and i >e3, then exit from
this phase. If e2 is positive and i >e3, then exit from this phase. 
If e2 is negative and „L<e 3, then exit from this phase.

5. Execute the statements of the body of the DO group. Execute them in 
the normal way; do not use any of the information saved in Step 1. 
Start with the first statement and continue until the END statement 
has been executed.

6. Go to Step 2.

A simple example of a DO group with a FORTRAN control is:

DO X = -90 BY .25 TO 90;
PUT SKIP LIST(X, SIND(X), COSD(X));
END;
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This group prints the values of the sine and cosine functions from -90 degrees 
to +90 degrees in increments of .25. It is equivalent to the statements:

X = -90;
LOOP: IF X>90 THEN GOTO DONE;

PUT SKIP LIST(XZ SIND(X), COSD(X));
X = X+.25;
GOTO LOOP;

DONE:

A short example that illustrates the consequences of Step 1 of the 
i n ter pre tat i on is:

A = 0;
B = 2;
C = 10 ;
K = l;
DO A(K) = A BY B TO C;

K = K+l
B = -B;
C = C-l;
END;

These statements are equivalent to:

DO A( 1) = 0 BY 2 TO 10;
K = K+l;
B = -B;
C = C-l;
END;

If the current values of the control parameters were used for each execution of 
the loop, the inter pretation of this loop would be extremely complicated; to 
start with, it would require a knowledge of all of the elements of the array A.

THE INDEX OF A DO GROUP

There are two special restrictions on the index of a DO group, as follows:

• The index must designate a scalar value. 
9

® The index must not designate an AREA value.

Aside from these restrictions, the index can be any construct that is a valid 
target for the assignment statements that are explicitly shown in the 
interpretation of the DO group.

The following program illustrates the use of a pseudo-varIable as the index 
of a DO group:

P: PROC;
DCL SYSPRINT FILE;
DCL Z COMPLEX FLOAT;
DO REAL(Z)a= 0 BY .25 TO 1;

DO IMAG(Z) = 0 BY .25 TO 1;
I F Z A= 0 THEN

PUT SKIP LIST(Zzl/Z);
END;

END;
END;
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This program lists Z and 1/Z for 24 values of the complex variable Z. The 
program shows that one DO group can be used within another. There is no 
restriction on the depth of the nesting that can be used.

The Non-Iterative DQ

A non-iterative DO group has the form:

DO;

^2

END;

where sj.z s2, and so on are the body of the group. The group is executed by 
executing the sequence of statements s_l, s_2z and so on, once.

The effect of the non-iterative DO group is to gather sJLz s2 > and so on 
into a single syntactic unit. The only use for this kind of DO group is as a 
consequence of an IF statement, as described earlier in this section.

THE GOTO STATEMENT

A GOTO statement has the form:

GOTO ref;

where ref is any reference that yields a scalar LABEL value. When the statement 
is executed, the reference is evaluated and control transfers to the statement 
designated by the LABEL value. The statement to which control transfers is the 
des t i nat i on of the transfer of control. If the destination is outside of the 
block that contains the GOTO statement, then the transfer causes control to exi t 
from that block; block exits are described later, in the section on "Procedure 
Invocation". If the program is recursive, additional rules are required to 
determine the destination; these are given later, again under "Procedure 
Invocation", and they apply only to certain advanced and unusual situations.

The GOTO with a Constant Reference

When the reference in a GOTO statement is a constant reference, the 
destination must be a statement in the same block or in a containing block. The 
reference is further restricted by the fact that a LABEL constant must be either 
a scalar or a one-dimensional array.

A GOTO statement whose reference designates an element of a LABEL array 
constant is called a swi tch. An example of the use of a switch is:

C( 1) 
C( 2) 
C( 5) 
DONE

GOTO C( I + 1) ;
Z = X**3 + Y**3;
Z = X/(Y**2-X);
Z = 1;

GOTO DONE;
GOTO DONE;
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Because it is an array subscript, the value of 1+1 is converted to an integer by 
dropping the fractional digits. Then the switch is interpreted as follows:

TRUNC(i+1) Action

0 or less the SUBSCRIPTRANGE condition occurs

1 the assignment labelled C(l) is executed

2 the assignment labelled C(2) is executed

3 (undef i ned)

4 (undef i ned)

5 the assignment labelled C(5) is executed

6 or more the SUBSCRIPTRANGE condition occurs

Observe that no condition occurs when an element is missing from within the 
array of labels.

The GOTO with a Non-Constant Reference

The use of a variable reference or a function reference in a GOTO statement
is usually confined to advanced applications or entirely avoided.

As an example of the use of a variable in a GOTO statement, consider the 
procedure:

IGL: PROC(X,A,ERROR) RETURNS(FLOAT);
DCL (X,A) FLOAT;
DCL ERROR LABEL;
DCL T FLOAT;
T = X**2 + A**2;
IF T<0 THEN GOTO ERROR;
RETURNC LOG(X+T));
END;

This procedure transfers to the statement designated by the variable ERROR when 
T is negative. The variable ERROR is a parameter, and its value is supplied by 
the reference to the procedure. An example of such a reference is:

ALPHA = (BETA + IGL(GAMMA,2,LAB))/DELTA;

LAB: PUT SKIP LIST("IGL FAILED AT ALPHA");
GOTO EXIT;

THE LOCAL ATTRIBUTE

The transfer of control performed by a GOTO statement can be either local 
or non -1 oca 1. A local transfer is one for which both the GCTO statement and its 
destination are immediately contained in the same block. A non-local transfer 
is any other transfer. A local transfer can be executed at considerably less 
cost than a non-local transfer.
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The PL/I interpreter can 
transfer can be recognized as

perform a local transfer efficiently only when the 
such before execution. Three cases apply:

e If the reference in the GOTO statement is a constant reference, a 
local transfer can be recognized by examination of the program.

© If the reference is a variable reference, a local transfer can be 
recognized only if the variable name is declared with the LOCAL 
at tr i bu te.

© If the reference is a function reference, a local transfer cannot be 
recognized before execution.

As an example of the use of the LOCAL attribute, consider the following program 
fragment:

DCL X LOCAL LABEL;

IF*Z=0 THEN X=LAB1; ELSE X=LAB2;

GOTO X;
LABI: M = ALPHA + BETA**2; GOTO DONE;
LAB2: M = ALPHA - BETA**2; GOTO DONE;
DONE:

The use of the LOCAL attribute is never essential. If the LOCAL attribute 
omitted from the declaration of X, these statements would still be correct; 
the execution of the GOTO X; would cost more.

were
bu t

A RESTRICTION ON THE DESTINATION

The destination of a GOTO statement must be a statement that is immediately 
contained in an active block. If the reference in the GOTO statement is a 
constant reference, this restriction requires that the destination be in some 
block that contains the GOTO statement, and the compiler checks for compliance. 
If the reference is a variable reference or a function reference, the matter is 
neither so simple nor so safe.

The following program illustrates the problem:

P:

Pl:

PROC; 
DCL X 
PROC;

LABEL;

X = LAB

LAB:

P2: PROC;

• • •
• • •
END;

• • •
GOTO X;

CALL
CALL
END;

• • •
END;
Pl;
P2;
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This program executes the procedure Pl and then the procedure P2. The first 
procedure assigns the label value designated by LAB to the label variable X. At 
the time of assignment, the statement designated by LAB is in an active block. 
Later, the second procedure attempts to execute 'GOTO X;'; but at that time the 
block that contains the statement designated by LAB is no longer active. 
Therefore the transfer is not valid.

There is no way to detect this invalid transfer in advance without 
understanding the logic of the program; therefore, the error is not detected by 
the comp i1 er.

BLOCK EXECUTION

The principal purpose of a BEGIN block is to establish declarations. The 
recommended style of programming in GCOS PL/I is to write short PROCEDURE 
blocks. Since the necessary declarations can be established in these PROCEDURE 
blocks, a BEGIN block is rarely needed; indeed, some programmers never use them.

Control can enter a BEGIN block only by execution of the BEGIN 
that is the first statement of the block. The statement is executed 
sequence or by transfer of control to a label prefix in the statement. 
BEGIN statement is executed, it does not cause any action directly, 
entry to the BEGIN block causes the block to be ac t i va ted.

statement 
either in 

When the 
but the

Control can ex i t 
is the last statement 
execution of a GOTO 
either case, exit from

from a BEGIN block by execution of the END statement that 
of the block. Alternatively, control can exit by 
statement whose destination lies outside the block. In 

the block causes the block to be deactivated.

The activation and deactivation of a block 
section on ’’Procedure Invocation”.

are described later, in the

GUIDELINES FOR FLOW OF CONTROL

programmer to concentrate on the details of the operations being performed. Two 
factors are important in PL/I programming: avoidance of unnecessary GOTO 
statements and proper use of page layout. These factors are discussed here.

When. the PL/I fac i1i t i es for programmi ng flow of control are used
effect i ve1 y, they make the logic of a program seem simple and thus- allow the

Avoidance of Unnecessary GOTO Statements

A common source of unclear programming is the use of a GOTO statement where 
IF statements, DO groups or procedure calls could be used. The avoidance of 
these GOTO statements requires more work in the design of a program but reduces 
the work of debugging; the net result is an improvement of the program.
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Some uses for the GOTO statement are necessary in PL/I because they can be 
avoided only by obscure tricks. The use of a switch is sometimes essential and 
the use of a GOTO statement to escape from a loop is common. But every use of a 
GOTO should be considered carefully and retained only if it fills a special 
need. There are not many reliable rules for good programming style; but 
avoidance of unnecessary GOTO statements is one such rule.

Layout Conventions

A program is arranged in an attractive layout by means of blanks, tabs, and 
newlines. The PL/I interpreter ignores the layout of a program, and leaves this
responsibility entirely in the hands
therefore has two tasks:

• He must choose conventions that

• He must detect his own errors
convent ions.

of the programmer. The programmer

provide for program layouts.

in his application of the layout

There is some variation in the layout conventions used by PL/I programmers. The 
following rules are used for the example programs in this manual:

2.

Start each statement on a new line. This keeps statements from 
getting lost.

If a statement, group, or block requires more than one line, indent 
every additional line relative to the first line. This makes it easy 
to find the end of the statement, group, or block.

If an IF statement with an ELSE clause requires more than one line, 
begin a new line for the THEN clause and a new line for the ELSE 
clause. Start the ELSE clause in the same column as the THEN clause. 
This makes it easy to match the clauses of an IF statement.

Put every 
which it 
par t i cu1 ar

label prefix at the left 
is a part is indented. 
1abe1 prefix.

margin, even when the statement of 
This makes it easy to search for a

These rules have exceptions. For example, a consequence should begin on the 
same line as the THEN or ELSE that precedes it. If a statement is very closely 
related to the statement that precedes it, it can appear on the same line; this 
is sometimes true of a GOTO statement.
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SECTION XI I

PROCEDURE INVOCATION

Programs can be written quickly and accurately if the top-down structured 
approach to programming is used. This approach is applied to a given problem as 
fo11ows:

1. Call the problem the current task»

2. Program the current task as a procedure. If the task is large and 
complicated, factor out a subtask; that is, select a coherent portion 
of the task, give it a name, and replace it by a CALL statement or
function reference to a procedure that will be written later. Place
the factored subtask on the list of remaining tasks. Continue to
factor out subtasks in this way until the current task can be written
as a simple procedure that is about one page long.

3. If the re are 
and go to 
comp 1ete.

any remaining tasks,
Step 2. 0therwi se,

let one of them 
the program for

be the current task 
the given problem is

Top-down structured programming depends heavily on the availability of a 
complete and efficient facility for writing and invoking procedures. PL/I fills 
that requirement well. Although the large number of procedure invocations 
introduced by the approach can increase the expense of executing a program, that 
expense is compensated for by the reduction in the cost of program development 
and maintenance. Further, the GCOS implementation of PL/I includes special 
optimizations designed to reduce the cost of procedure invocation. From all of 
this, it follows that procedure invocation is perhaps the most important feature 
of GCOS PL/I.

The subject of procedure invocation is presented here in an order that 
allows explanation and motivation of each topic. The discussion begins with the 
passing of arguments to parameters since all the features of procedure 
invocation depend on this operation. After that preliminary, the execution of 
CALL statements and the interpretation of function references. are described. 
This provides a basis for the consideration of the special properties of 
procedures, including recursion and side effects. Next the use of variables and 
function references to supply the entry point of the invoked procedure is 
explained. Finally, the details of the syntax of a procedure are given.
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ARGUMENTS AND PARAMETERS

Whether a procedure is invoked by a CALL statement or a function reference, 
an important part of the operation is the pass i ng of argumen ts to parameters. 
As a simple example, consider the following program:

P: PROC;
DCL A FLOAT;
DCL B FIXED;

CALL Ql(A,B,A+6);

QI: PROC(X,Y,Z);
DCL (X,Y,Z) FLOAT;

END;
END;

In this example, the CALL statement invokes the procedure labeled QI. The CALL 
statement has a list of three arguments:

(A,B,A+6)

and the procedure has a cor responding list of parameters, one for each argument:

(X,Y,Z)

When the procedure QI is invoked, each argument is passed to its corres ponding 
pa r ame te r.

The arguments are passed in two ways, as follows:

If the argument is a variable reference and has a suitable storage 
type, then the variable designated by the argument is passed; that is, 
the corresponding parameter is set to designate the same variable as 
the argument just before procedure execution. Such an argument is a 
by-reference argument. The first argument in the program just given 
is a by-reference variable.

If the argument is suitable for assignment to the cor responding 
parameter but cannot be handled as a by-reference argument, then the 
va1ue designated by the argument is passed; that is, a system 
temporary is allocated, the argument value is assigned to the 
temporary, and the parameter is set to designate the temporary. Such 
an argument is a by-va1ue argument. The second argument in the 
program is by-value because its storage type differs from thatof its 
parameter. The third argument is by-value because it is not a 
variable reference.

Observe that an argument that is passed by-reference can have its value changed 
during procedure execution, whereas a by-value argument merely supplies the 
initial value for a system temporary.

The discussion of arguments and parameters given thus far is intended to be 
an introduction to the subject. In the following paragraphs, detailed rules and 
examples are given. First the classification of arguments as by-reference or 
by-value is defined; then the interpretation of the two kinds of arguments is 
given. The discussion continues with guidelines for argument usage and 
concludes with a note on argument validity.

12-2 DE05



Argumen t Classification

The rules for the c1 assification of an argument as by-reference or by-value 
are given here. The classification is performed during program compilation. 
This treatment contributes to the efficiency of the object program, but it also 
makes the rules more complicated; specifically, it accounts for the presence of 
Rules 3 and 4.

An argument i s by-reference if it satisfies all of the following rules:

1. A by-reference argument must be a variable reference. This
restriction is present because a procedure can assign a value to a 
by-reference argument; and only a variable reference can be the target 
of an assignment statement.

A by-reference argument must have the same storage type as the 
cor res ponding parameter. This restriction is present because a 
by-reference argument and a parameter designate the same variable and 
(with exceptions that are not relevant here) every reference to a 
given variable must use the same storage type.

With one exception, a by-reference argument must be declared with 
co n s t a n t extents. This restriction is present because argument 
classification is done at compile time, when the value of a 
non-constant extent is not known.

The except i on to this restriction allows the use of a non-constant 
extent in the declaration of an argument if the cor responding extent 
in the declaration of the parameter is ’*’. The parameter extent 
means that the extent is copied from the argument extent; therefore it 
necessarily has the same value and there is no need to examine the 
value of the argument extent.

4. A by-reference argument must not be a reference to an array that is 
declared as DEFINED and uses i sub1s in its definition. This 
restriction is present because a reference to an i su b-def i ned array 
requires a special encodement, the need for which cannot be detected 
at compi1e time.

An argument is by-va1ue if it does not satisfy some of the rules just given and 
does satisfy the following rule:

A by-value argument must have a storage type such that the argument 
value can be converted, where necessary, to the storage type of the 
cor responding parameter. This restriction is present because the 
value of a by-value argument is assigned to a temporary that has the 
storage type of the parameter.

With one exception, an argument is valid if it can be classified as by-reference 
or by-value. The exception is:

6. A by-reference argument must not designate an unconnected aggregate if 
the array bounds of the declaration of the cor responding parameter are 
all constants. This restriction is present because of efficiency 
considerations and the compile-time classification of arguments.

The term unconnected is defined in terms of the layout of storage described 
under ’’Arrays” in the section on ’’Value Storage”. An array is connected or 
unconnected, depending on whether its elements are adjacent in storage or not.
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EXAMPLES OF ARGUMENT CLASSIFICATION

As the basis for detailed examples of argument classification, consider the 
following program:

P: PROC;

ALLOCATE B;
CALL Q2(S(3),B);

DCL 01 S(10) STATIC EXTERNAL,
02 ACCT DEC 1MAL(8,2), 
02 ERR ENTRY(FLOAT,FIXED DEC(10)) RETURNS(FLOAT);

DCL B CHAR(N) CONTROLLED;
DCL N FIXED;
DCL 01 T,

02 ACCT DEC FIXEDC8,3), 
02 ERR ENTRY(FLOAT,FlXED DEC(10)) RETURNS(FLOAT);

DCL C CHARC30);
• • •
N = 30;

CALL Q2(T,C);

Q2: PROC(M1,M2);
DCL 01 Ml,

02 BALANCE DEC FIXED(8,2), 
02 EROUT ENTRY;

DCL M2 CHAR(30) ;
• • •
END;

END;

This example has two CALL statements, 
statement are classified as follows:

The arguments i n the first CALL

The argument S(3) is by-reference. The declaration of S is 
considerably different from that of Ml, but a careful examination 
shows that the declarations give the same storage type: S is an array 
of structures, but S(3) is a structure of the same aggregate type as 
Ml; the attributes STATIC EXTERNAL are not part of the storage type; 
DECIMAL(8,2) and FIXED DEC(8,2) are two ways to describe the same data 
type; and the only part of the declaration of S.ERR that is part of 
the storage type is the keyword ENTRY.

The argument B is by-va1ue. Although the storage types of B and M2 
are the same when the CALL statement is executed, Classification Rule 
3 is not satisfied.

The arguments in the second CALL statement are classified as follows;

The argument T is by-va1ue. The storage type of T differs from that 
of Ml in just one place; the scale-factor of T.ACCT is different from 
that of Ml.BALANCE.

The argument C is by-reference. Its storage type is explicitly the 
same as that of M2.

This example illustrates the fact that a parameter can correspond to a 
by-reference argument in one CALL statement and to a by-value argument in 
another.

12-4 DE05



EXAMPLES OF CONNECTED AND UNCONNECTED ARGUMENTS

As the basis for examples of arguments 
arrays, consider the following program:

that are connected or unconnected

P • P RO C *
DCL A(12,12) FLOAT;

CALL Q5(A(3,*)); 
• • •

Q5: PROC(X);
DCL X(12) FLOAT;

END;
END;

The argument A(3,*) is valid for the following reasons:

It is classified as by-reference.

It is a cross-section of an array but is nevertheless connected 
because A(3,l), A(3,2), and so on, are adjacent in storage. Therefore 
it is a valid by-reference argument for a parameter that has a 
constant array bound.

Suppose the CALL statement in the example just given is changed to:

CALL Q5(A(*,8));

This CALL statement is not a valid invocation of the procedure. The argument is 
not connected because it represents A(l,8), A(2,8), and so on, and the 
designated variables are not adjacent in storage. There are two ways to correct 
the call:

The argument can be parenthesized, thus:

CALL Q5((A(*,8)));

For purposes of classification, the argument is now a parenthesized 
expression, not a variable reference. Therefore the argument is 
by-value and this restriction does not apply. The method cannot be 
used if the procedure Q5 is programmed to assign a value to Al*,8); 
and it incurs the added expense of copying the array into a system 
temporary as part of the passing of the argument.

The array bound in the parameter can be changed to ’*’, thus:

DCL X(*) FLOAT;

The parameter no longer has a constant array bound; therefore, this 
restriction does not apply. The argument remains by-reference, but it 
is handled by the more general and more expensive method associated 
with an ’*’ array bound.

The choice between these two methods does not arise often because variab1es.that 
designate unconnected storage are unusual in typical programming applications.
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Argument I interpretation

When a CALL statement or function reference is executed, each argument 
interpreted according to its classification, as follows:

If the argument is by-reference, then the cor responding parameter is 
set, just before each procedure execution, to designate the variable 
that is currently designated by the argument. The parameter 
designates that variable throughout the execution of the procedure. 
Just after procedure execution the association between the parameter 
and the variable is broken; but the variable itself continues to 
exist.

If the argument is by-va1ue, then the interpreter allocates a system 
temporary that has the same storage type as the parameter, evaluates 
the argument, assigns the argument value to the temporary, and sets 
the parameter to designate the temporary. These actions are all taken 
just before procedure execution. The parameter designates the 
temporary throughout the execution of the procedure. Just after 
procedure execution, the interpreter frees the temporary and its value 
is lost.

The differences in the two interpretations lie entirely in the CALL statement or 
function reference that invokes the procedure, and not in the interpretation of 
the procedure itself.

EXAMPLES OF ARGUMENT INTERPRETATION

As the basis for examples of the interpretation of arguments, consider the 
following program:

P: PROC;
DCL ALPHAC10) FLOAT;
DCL BETA FLOAT BIN(40);
DCL (I,K) FIXED; 
• • •
CALL Q3(ALPHA(I+2),BETA,2*K+6);

Q3: PROC(D,X1,X2);
DCL (D,X1,X2) FLOAT; 
• • • 
END;

END;

The arguments in this example are interpreted as follows:

The argument ALPHA(l+2) is classified as by-reference. Just before 
procedure execution begins, the subscript expression is evaluated; 
suppose the current value of the expression is 3. Then the 
interpreter locates the variable designated by ALPHA(3) and sets the 
parameter D to designate that variable. During procedure execution, 
the third element of ALPHA can be referenced either as ALPHA(3) or D. 
It may happen that the value of I is changed during procedure 
execution; but that change does not cause D to designate some other 
element of the array ALPHA. Just after procedure execution, the 
association between D and ALPHA(3) is broken and D becomes undefined 
until the next time the procedure is invoked.
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The argument BETA is classified as by-value because its precision is 
different from that of the parameter XI. Just before procedure 
execution, the interpreter allocates a system temporary of storage 
type FLOAT, evaluates the variable reference BETA, and assigns the 
value to the system temporary. During procedure execution, the 
parameter XI designates the temporary, not the variable that is 
designated by BETA. If the value of BETA is changed during procedure 
execution, it does not affect the value of the temporary. Just after 
procedure execution, the temporary is freed.

The argument 2*K+6 is classified as by-value. It is treated in much 
the same way as BETA; however, for 2*K+6 it is more readily apparent 
that a change in the temporary designated by X2 does not change the 
argument, since a value cannot be assigned to an operator expression.

The Effect of an Extent

When an asterisk, is written as an extent in the declaration of a 
parameter, it indicates that the extent for the parameter is to be copied from 
the storage type of the cor responding argument. (An extent is an array bound, a 
maximum string length, or an area size.) The value of the parameter extent is 
determined in this way each time the procedure is invoked, and therefore can 
change from one invocation to another. Under certain circumstances, when the 
aggregate type of the argument must be converted, there is no argument extent 
that corresponds to a parameter array bound; then, the value 1 is assumed 
for the array bound.

AN EXAMPLE OF AN ’*' EXTENT

As an example of the use of an 1 4. ! as an array bound, consider the
following program:

P: PROC;
DCL A(S) FLOAT CONTROLLED;
DCL S FIXED; 
• • • 

.ALLOCATE A;
CALL QU(A);

CALL QU(200);

QU: PROC(X);
DCL X(*) FLOAT; 
• • • 
END;

END;

This program has two CALL statements, and their arguments are passed as follows:

In the first call, the argument is by-reference. The details of the 
program are not shown, but suppose this CALL statement is executed 
twice, with S equal to 10 and 12, respectively. Tne first time, A is 
allocated with ten elements and the declaration of the parameter 
becomes X(10) FLOAT. The second time A has twelve elements and the 
declaration is X(12) FLOAT.
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© In the second call, the argument is by-value. The argument must be 
converted from a FIXED DEC(3) scalar to a FLOAT array. Since the 
array bound is given neither by the argument nor the parameter, it is 
assumed to be one. Therefore, the declaration of the parameter 
becomes X(1) FLOAT.

Guidelines for Arguments

The classification of arguments is performed automatically by the compiler, 
without an explicit indication in the program. This convenient arrangement must 
be supervised carefully by the programmer, and he should be aware of the 
classification of each argument as he writes a CALL statement. The effect of 
classification on both efficiency and correctness of a program is considered 
here.

First consider efficiency. The cost of passing an argument becomes 
significant when the storage type of the argument has one or more extents; such 
an argument designates a relatively complicated and potentially large variable. 
If the argument is by-reference, it is necessary only to set the parameter to 
designate the argument variable; this is an inexpensive operation, whose cost is 
independent of the extents of the variable. On the other hand, if the argument 
is by-value, a temporary must be allocated and the entire value copied into the 
temporary; and this can be expensive. A purpose of the parameter extent is 
to allow the passing of arguments by-reference that would otherwise be passed 
by-value because their extents did not agree with those chosen for the 
parame ter.

Next consider correctness. A serious mistake is the assumption that an 
argument is by-reference when it is not; the assumption is easily made when the 
argument is a variable reference. Suppose the procedure Q4 in the most recently 
given example delivers a value by assigning it to the parameter, X. This is 
correct because the argument A is by-reference and will receive the delivered 
value. Suppose, however, that the programmer decides, at the last minute, to 
increase the precision of A and therefore changes its declaration to:

DCL A(S) FLOAT(iiO) CONTROLLED;

Now the storage type of the argument is different from the parameter and the 
argument is classified as by-value. Instead of changing the value of A, the 
procedure changes the value of a system temporary, and the delivered value is 
lost. This mistake is serious because it is not detected by the compiler and is 
not apparent to a casual reader.

Whenever the compiler can detect a difference between storage types of 
argument and parameter, it issues a warning to let the programmer know that a 
by-value passing occurs. The compiler detects such a mismatch when the 
parameter is for an internal procedure or for an external procedure for which 
the programmer has supplied an entry declaration specifying the type of each 
parameter for the procedure. Since the external procedure is compiled 
separately, however, the compiler is not able to check to see that the entry 
declaration does correctly specify the type of each parameter. See the 
discussion of "Entry References and Declarations" later in this section.
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THE CALL STATEMENT

A CALL statement has one of the following forms:

CALL ref( arg1i s t );

CALL ref();

CALL ref;

where ref is the entry reference and argl i st is the argument_ 1 i st. The entry 
reference must yield a scalar entry value. The argument list is a sequence of 
arguments separated by commas, and each argument is an expression. As special 
cases, the argument list can be empty, as shown in the second form, or the 
parenthesized argument list can be absent, as shown in the last form; these 
special cases are equivalent and are used when no arguments are required.

Agreement of CALL with Entry Point

The entry reference of a CALL statement designates 
The form of the CALL statement must agree with the form 
point. Specifically, the CALL statement must 
restrictions:

a procedure entry point, 
of the procedure entry 
satisfy the following

The number of arguments in the CALL statement must be equal to the 
number of parameters at the designated procedure entry point. This 
restriction provides for the matching of arguments with parameters. 
If there are no arguments in the CALL statement, then there must be no 
parameters at the designated procedure entry point.

Each argument must be a valid by-reference argument or a. vjLl_i_d 
by-va1ue argument as defined earlier in the discussion of 
classification under "Arguments and Parameters".

3, A RETURNS attr i bute must not appear at the designated procedure point. 
This restriction is present because a RETURNS attribute only makes 
sense if the procedure is invoked by a function reference.

The Execution of CALL Statements

The execution of a CALL statement is performed in five steps, as follows:

Interpret entry reference 
Interpret arguments 
Activate procedure 
Execute procedure 
Exit from procedure

These steps are now considered in detail.
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INTERPRET ENTRY REFERENCE

The first step in the execution of a CALL statement is the 
of the entry reference, as follows:

i nterpretat i on

1. The entry reference is evaluated to yield an entry value.

2. The entry value is used to locate a procedure entry point. In a PL/1 
procedure, the procedure entry point is either a PROCEDURE statement 
or an ENTRY statement. The procedure that immediately contains the 
designated procedure entry point is the i nvoked procedu re for this 
execution of the CALL statement.

The entry referenced may be in the same external procedure as the reference (as 
when the entry is to an internal procedure or to the external procedure itself). 
Or the entry referenced may be in an external procedure different from the one 
including the reference. Such a different external procedure may or may not be 
written in PL/I and may or may not have been written by the programmer writing 
the procedure with the reference.

INTERPRET ARGUMENTS

The next step in the execution of a CALL statement is the interpretation of 
arguments, which was described in detail under "Arguments and Parameters". 
Briefly,

Each by-reference argument is interpreted by evaluating any subscript 
expressions or 1ocator-qualifier expressions that appear in the 
argument. Then the designated variable is located and the parameter 
that corresponds to the argument is set to designate that variable.

Each by-value argument is evaluated. Then a system temporary is 
allocated that has the same storage type as the corresponding 
parameter, the value of the argument is assigned to the temporary, and 
the parameter is set to designate the temporary.

The order in which the arguments are interpreted is not defined. After this 
step, each parameter designates either a variable or a temporary.

ACTIVATE PROCEDURE

The third step is the activation of the procedure. A new activation regi on 
is created for the procedure (in the language of GCOS PL/I, a new stack frame is 
added to the stack). Storage units are allocated in this activation region as 
fo11ows:

Each variable of storage class AUTOMATIC that is declared in the 
invoked procedure is allocated. Since the AUTOMATIC is assumed when 
no storage class attribute is given, most variables of a typical 
program are handled in this way.
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A system temporary for the return address is allocated. The return 
address is used to resume execution after the CALL statement when 
execution of the invoked procedure is complete.

Other system temporaries necessary for maintaining 
ON conditions, holding temporary results, and so 
These need not be considered in detail since the 
refer to them directly.

the stack, hand 1i ng 
on are all oca ted. 
programmer does not

In order to reduce execution cost, the GCOS implementation of PL/I avoids 
the creation of a block activation region for certain procedures. This 
optimization technique does not change the interpretation of a program, and it 
can be ignored by a programmer who remains within the framework of the PL/I 
language. However, when the programmer uses various routines to examine stack 
frames directly, the effects of the technique are apparent. The compiler prints 
a message for each procedure that is compiled without an activation region, and 
provides information about the distribution of the storage units that would have 
occupied the missing activation region.

EXECUTE PROCEDURE

The fourth step is the execution 
the PROCEDURE or ENTRY statement 
execution of this statement causes no 
describe a procedure entry point; 
sequential execution of statements of

of the procedure. Execution begins with 
that is at the procedure entry point. The 
action because its only purpose is to 
but it provides the starting point for 

the procedure.

Execution of the procedure continues until an ex i t s ta temen t is executed, 
as described in the next step.

EXIT FROM PROCEDURE

The last step in the execution of a CALL statement is the execution of an 
exit s tatement. Each exit statement specifjes an exit destination; that is, 
the statement that is excuted once the execution of the CALL statement is 
complete. There are three kinds of exit statement, as follows:

A RETURN s ta temen t is an exit statement for the given procedure if it 
is contained in that procedure but not in a smaller procedure. Its 
exit destination is the statement that appears next after the given 
CALL statement.

An END statement is an exit statement for the given procedure if it is 
the last statement of that procedure. Its exit destination is also 
the statement that appears next after the given CALL statement.

A GOTO statement is an exit statement for the given procedure if it is 
part of the given procedure or of a more recently invoked procedure 
and its destination lies outside the given procedure. The exit 
destination is the destination of the GOTO statement.
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If the exit statement is a RETURN statement, it must not have a returned result; 
that is, it must have the form:

CALL statement does not expect a

RETURN;

As part of 
are performed:

the execution of the exit statement, the following operations

The invoked procedure is deacti vated; that is, the variables and 
temporaries that are allocated in the activation region for the 
procedure are freed and the activation region is discarded. (In the 
language of GCOS PL/I, the stack frame associated with the procedure 
is removed from the stack.)

Each system temporary allocated for a by-value argument is freed.

After these operations, control is transferred to the statement designated by 
the exit destination.

Examples of CALL Statements

As an example of the execution of a CALL statement, consider the following 
program:

P: PROC OPT IONS(MA IN);
DCL ALPHA FLOAT;

CALL RACALPHA+1); 
• • •

LAB:

RA: PROC(X);
DCL X FLOAT;

CALL RB(X);
• • •
END;

RB: PROC(Y);
DCL Y FLOAT;
DCL A(20) FLOAT;

GOTO LAB;
• • •
END;

END;

The external procedure P is passed control by GCOS. This execution is 
equivalent to the following PL/I statement:

CALL P;
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Execution of the command proceeds as follows:

1. Interpret Entry Reference tQ P. The P in the 
designates the first statement of the program.

2. Interpret Arguments for P. There are no arguments.

CALL statement

3. Activate P. An activation region for the procedure named P is 
created. The AUTOMATIC variable ALPHA and the required temporaries 
are allocated in that region.

4. Execute P. Execution begins at the designated PROCEDURE statement and 
proceeds until the first CALL statement is reached. The execution of 
the CALL statement proceeds as follows:

Interpret Entry Reference to RA. The RA in the CALL statement 
designates the second PROCEDURE statement in the program.

Interpret Arguments for RA. The argument ALPHA+1 is by-value. A 
system temporary of storage type FLOAT is allocated, the value of 
the argument is assigned to it, and the parameter X is set to 
designate the temporary.

Activate RA. An activation region for the procedure named RA is 
created and the required system temporaries are allocated in it.

Execute RA. Execution begins with the PROCEDURE statement 
labeled RA and proceeds until the second CALL statement of the 
program is reached. The execution of the CALL statement proceeds 
as follows:

5 .

2.

3.

Interpret Entry Reference to RB. The RB i n the CALL 
statement designates the third procedure statement in the 
program.

Interpret Arguments for RB. The argument X is by-reference. 
The parameter Y is set to designate the storage unit 
designated by X, which is the system temporary created in 
Step 2, above.

Activate RB. An activation region for the procedure named 
RB is created, and the array A and the system temporaries 
are all oca ted in it.

4.

5 .

Execute RB. Execution begins with the PROCEDURE statement 
labeled RB and proceeds until the GOTO statement is reached. 
This statement is the exit statement for RB because its 
destination is outside of RB. It is also the exit statement 
for RA because, even though it is not contained in RA it is 
contained in a more recently invoked procedure.

Exi t from RB. The procedure RB is deactivated by freeing A 
and its temporaries and discarding its activation region. 
Its argument is by-reference, so there is no argument 
temporary to free. This concludes execution of the 
statement CALL RB(X);.

Exi t from RA. The procedure RA -i s deactivated by freeing its 
temporaries and discarding its activation region. The storage 
temporary used for its argument is freed. This concludes 
execution of the statement CALL RACALPHA+1);.
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5. Continue Execution of P. Execution of the external procedure
continues, starting with the statement labeled LAB and proceeds until 
the END statement that is the last statement of the program is 
reached. This statement is the exit statement for P.

6. Exit from P. 
temporar i es 
execution of

The procedure P is deactivated by freeing ALPHA and its 
and discarding the activation region. This concludes 
the program.

The most important feature of this example is the fact that the GOTO statement 
serves as the exit statement for both the procedure named RB and the procedure 
named RA.

FUNCTION REFERENCES

A function reference has one of the following forms:

ref( argli s t )

where ref is the entry refe rence and a rg1i s t is the argumen t list. The entry 
reference must yield a scalar entry value. The argument list is a sequence of 
a rgumen ts separated by commas, and each argument is an expression. The second 
form is used when no arguments are required.

Agreement of Reference with Entry Point

The entry reference of a function reference designates a procedure entry 
point. The form of the function reference must agree with the form of the 
procedure entry point as follows:

1. The number of arguments in the function reference must be equal to the 
number of parameters at the designated procedure entry point.

2. Each argument must be a valid by-reference argument or a valid 
by-va1ue argument as defined earlier in the discussion of 
classification and validity under "Arguments and Parameters".

3. A RETURNS attribute must appear at the designated procedure entry 
point. The attribute is necessary because it specifies the storage 
type of the result returned by the function and thus specifies the 
storage type of the function reference itself.

When a procedure is invoked by the interpretation of a function reference, it is 
sometimes called a funct i on; however, that terminology is not used here.
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The Interpretation of Function References

The interpretation of a function reference has six steps, as follows:

Interpret entry reference 
Interpret arguments 
Activate procedure 
Execute procedure 
Exit from procedure 
Fetch result

The first four steps are the same as for the execution of a CALL statement. The 
fifth step is different and the sixth step is new. These last two steps are now 
considered in detail.

EXIT FROM PROCEDURE

The fifth step in the interpretation of 
execution of an exi t s ta ternen t. There are only two 
a function reference, as follows:

a function reference is the 
kinds of exit statement for

A RETURN statement is an exit statement for the given procedure if it 
is. contained in that procedure but not in a smaller procedure. Its 
exit destination is that point in the program at which the value of 
the function reference is about to be used.

A GOTO s ta temen t is an exit statement for the given procedure if it is 
part of the given procedure or of a more recently invoked procedure 
and its destination lies outside the given procedure. The exit 
destination is the destination of the GOTO statement. In this case, 
the procedure does not return a value.

If the exit statement is a RETURN statement, it must have 
that is, it must have the form:

a returned result;

RETURN(x);

where _r is an expression. The END statement that is 
given procedure is not a valid exit statement and must 
these restrictions reflect the fact that a procedure 
function reference must return a value unless it exits

the last statement of the 
not be executed. Both of 
that is i nvoked by a 

with a GOTO statement.

As part of 
are performed:

the execution of the exit statement, the following operations

The invoked procedure is deactivated; that is, the variables and 
system temporaries that were allocated in the activation region for 
the procedure are freed and the activation region is discarded.

Each system temporary that was allocated for a by-value argument is 
freed.

12-15 DE05



The result is returned. That is, a system temporary is allocated with 
the storage type given by the RETURNS attribute, the expression in the 
RETURN statement is evaluated, and the value is assigned to the system 
temporary. More is said of the way a result is returned later in this 
section under ’’The RETURNS Attribute”.

After these operations, control is transferred to the point designated by the 
exit destination.

FETCH RESULT

As the last step in the interpretation of a function reference, the result 
is fetched from the temporary to which it was assigned by the preceding step. 
This value is the value of the function reference.

An Example of a Function Reference

As an example of the interpretation of a function reference, consider the 
following program:

P: PROC;
DCL (ALPHA,BETA) FLOAT;

ALPHA = 2*F1(BETA);

Fl: PROC(X) RETURNS(FLOAT);
DCL X FLOAT;
DCL Y FIXED;

RETURN(Y+1);
• • •
END;

END;

The execution of the assignment statement begins with the interpretation of the 
function reference, as follows:

1. Interpret Entry Reference. The Fl in the function reference 
designates the second PROCEDURE statement in the program.

Interpret Arguments. The argument BETA 
parameter X is set to designate the storage

Acti vate Procedure. An activation region for 
is created. The AUTOMATIC variable Y and all 
a 11 oca ted.

s by-reference. The 
unit designated by BETA.

the procedure named Fl 
required temporaries are

Execute Procedure. Execution begins with the PROCEDURE statement 
labeled Fl and proceeds until the RETURN statement is reached.

Exit from Procedure. The expression Y+l is evaluated; then the 
resulting value is converted to FLOAT and assigned to the system 
temporary that is provided for it. The procedure Fl is deactivated by 
freeing and discarding its activation region.

Fe tch Resu1t. The result is fetched from storage and becomes the 
value of the function reference Fl(BETA).
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After the function reference is interpreted its result is multiplied by two and 
assigned to ALPHA.

PROCEDURES

A procedure gathers a sequence of statements together for execution as if 
they were a single operation. A procedure is defined as:

• A PROCEDURE statement, followed by

• A sequence of statements that is the body of the procedure and that 
may include some ENTRY statements and RETURN statements, followed by

• An END statement.

Procedures, BEGIN blocks, and DO groups must be nested with respect to one 
another, as described earlier, in the section on "Program Syntax".

Many examples of procedures are given throughout this section, and 
therefore no additional examples are given here. Instead, the specialized 
statements used in procedures are described, beginning with the PROCEDURE 
statement, continuing with the ENTRY statement, and concluding with the RETURN 
and END statements.

The PROCEDURE Statement

A PROCEDURE statement has one of the following forms:

A PROCEDURE( pari i st ) [RETURNS( rd )] [RECURSIVE] [OPTIONSC ogjt )] ;

x PROCEDURE( ) [RETURNS( rd )] [RECURSIVE] [OPTIONSC O£t )] ;

x PROCEDURE [RETURNS( rd )] [RECURSIVE] [OPTIONSC opt )] ;

where px is the prefix, PROCEDURE can be abbreviated as PROC, parii s t is the 
pa rame te r list, rd is the resu1t de s c r i p to r and opt is the option. The brackets 
indicate that the RETURNS attribute, the RECURSIVE keyword, and the OPTIONS 
attribute are optional. The second and third forms are equivalent and are used 
for an entry point with no parameters.

The execution of a PROCEDURE statement causes no action; its purpose is to 
indicate the beginning of a procedure and to define an entry point to a 
procedure. Descriptions of the prefix, the parameter list, the RETURNS 
attribute, the RECURSIVE keyword, and the OPTIONS attribute follow.
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THE PREFIX

The prefix.of a PROCEDURE statement is a sequence of any number of 
cpnditi on pr„ef?xes fol lowed by a sequence of one or more label prefi xes. Each 
condition prefix applies to the entire procedure that begins with the PROCEDURE 
statement; the effects of these condition prefixes are described later, in the 
section on Condition Handling”. Each label prefix is an identifier followed by 
a colon, and its effect is described here.

An identifier in a label prefix in a PROCEDURE 
.narne, and it is interpreted as follows:

s tatement i s a procedu re

A procedure name has the attributes INTERNAL ENTRY CONSTANT or 
EXTERNAL ENTRY CONSTANT, depending on whether it is at the beginning 
of a procedure that is contained in a larger procedure or not.

A PROCEDURE statement begins a given procedure, but each label prefix 
that begins the PROCEDURE statement is considered to be outside the 
procedure. Thus, the declaration of an INTERNAL procedure name is 
established in the procedure or BEGIN block that immediately contains 
the given procedure; and the declaration of an EXTERNAL procedure 
name is established in an imaginary BEGIN block that encloses all of 
the external procedures of a program.

During execution of the program, a reference to the procedure name 
yields the ENTRY value that designates the PROCEDURE statement.

The prefix of a PROCEDURE statement 
prefix, as in the following example:

usually consists of just a single label

P3: PROC(X);

During the informal discussion of programs, it is convenient to use the 
identifier in a label prefix both as a name for a procedure and as a name for an 
entry point of the procedure. For example, it might be said of the statement 
CALL P3(A+1); that it "invokes the procedure P3” or that it "invokes a procedure 
at entry point P3". Strictly speaking, however, the statement "invokes a 
procedure at the entry point that is designated by the ENTRY value that is 
associated with the name P3".

The following PROCEDURE statement has a prefix that consists of three label
prefixes:

ALPHA:
T0P_RUN:
F13: PROC(Y);

The three ENTRY constant names, 
entry point. The layout used in 
each name at the left margin 
entry name.

ALPHA, T0P_RUN, and F13, all designate the same 
this example is recommended because it places 
and makes i t easy for a reader to search for an

12-18 DE05



THE PARAMETER LIST

The parameter list is a sequence of parameters separated by commas, and 
each parameter is an identifier. Parameters should be declared; and, for 
clarity, the declarations of the parameters should be the first statements of 
the procedure body.

AA: PROC(ALPHA,MAX_VAL);
DCL ALPHA FIXED DEC(8);
DCL MAX_VAL FLOAT;
• • •
END;

With the following exceptions, a parameter name is declared like any other 
variable name:

When an identifier appears in a parameter list, its scope, storage 
class, and category must be INTERNAL, PARAMETER, and VARIABLE, 
respectively. Since these attributes are supplied by default, there 
is no need to write them in the declaration of a parameter.

The INITIAL attribute cannot be used. This exception is present 
because the INITIAL attribute is valid only for a variable that has 
its own storage, and a parameter is always set to designate previously 
allocated storage.

• An extent (array bound, maximum string length, or area size) can be 
written only as an or as a decimal integer constant. The use of 
the '*’ extent is discussed earlier, under "Arguments and Parameters"; 
it indicates that the extent for the parameter is to be copied from 
the storage type of the cor responding argument. A decimal integer 
constant extent does not provide for anything that an ’*’ cannot do, 
but it permits more efficient compilation of references to the 
parameter, and should be used where the generality of an ’*’ extent is 
not requ i red.

These exceptions reflect the logical consequences of the way in which parameters 
are interpreted; they do not restrict the parameters. Indeed, an important 
feature of PL/I is that any value, scalar or aggregate, computational or 
non-computational, can be passed as an argument to a procedure or returned as a 
resu1t.

THE RETURNS ATTRIBUTE

Depending on whether the RETURNS attribute is present or absent, an entry 
point is invoked by a function reference or a CALL statement, respectively. The 
RETURNS attribute has the following form:

RETURNSC d )

where d. is the descriptor. The descriptor gives the declaration of the storage 
type of the returned result; with the following exceptions, it is written 
exactly as the storage type of a variable is given in a DECLARE statement:

Any attributes that are not part of the storage type are omitted.

The names of members of a structure are omitted.

Each extent (array bound, maximum string length, or area size) must be 
either an or a decimal integer constant.
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The storage type given by the descriptor of the RETURNS attribute describes the 
system temporary to which the RETURN statement assigns its value. This 
temporary is associated with the function reference that invoked the procedure.

An Example of the RETURNS Attribute

For a rather
procedu re:

complicated example of a descriptor, cons i der the fol lowing

Al: PROC(X) RETURNS(01 DIM(*)Z
02 FLOAT,
02 FIXED DEC(8));

DCL 01 X(*),
02 NUM FLOAT,
02 M FIXED DEC(8);

RETURN(X+1);
END;

This, procedure accepts an array of structures with any bounds as its parameter 
and it returns a result that has exactly the same storage type. It is chosen as 
an example because the declaration of X, given in a DECLARE statement, can be 
compared to the declaration of the result, given as a descriptor in the RETURNS 
a 11 r i bute.

THE RECURS IVE KEYWORD

The RECURSIVE keyword has the form:

RECURS IVE

This keyword applies to an entire procedure, not to a particular 
therefore, it is used only in a PROCEDURE statement and is 
attribute. Furthermore, the keyword refers to the way in which a 
invoked and not to the action taken by the procedure.

entry point; 
not called an 
procedure i s

A procedure is recurs i ve if, for some possible execution of the program in 
which it appears, it is invoked when a previous invocation is still active; 
examples are given later, under "Recursive Procedure Execution". In Standard 
PL/I, every recursive procedure must have the keyword RECURSIVE in its PROCEDURE 
statement. In some implementations of PL/I, the addition of the keyword causes 
a change in the way the procedure is compiled; specifically the code becomes 
valid for recursion but less efficient. The GCOS implementation of PL/I assumes 
that every procedure is recursive and thus does not depend on the RECURSIVE 
keyword. The appropriate use of the RECURSIVE keyword is recommended to GCOS 
programmers because it maintains compatibility with the Standard and gives 
useful information about the procedure to a reader.

THE OPTIONS ATTRIBUTE

The OPTIONS attribute on a PROCEDURE declaration has only one form:

OPTIONS (MAIN)
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(For other OPTIONS attributes accepted on ENTRY declarations, see the discussion 
of "Entry References and Declarations" later in this chapter.) The OPTIONS 
(MAIN) attribute can only be given on an external procedure declaration. It 
identifies the procedure to which GCOS is to pass control when the program is 
loaded and execution is initiated. If none of the external procedures that call 
one another, and hence are loaded together, are given the OPTIONS (MAIN), the 
first loaded procedure is the one to which control is passed when execution is 
initiated. If more than one procedure is given the OPTIONS (MAIN) attribute, 
those after the first are remarked as erroneous and control is transferred to 
the f i rs t.

The name of an external procedure may also be given on a $ ENTRY control 
card that is processed by the loader to identify which of several procedures 
being loaded is to be given control when execution is initiated.

The procedure to which 
for no arguments are passed

control is given should not specify any 
when control is given.

parameters,

The ENTRY Statement

An ENTRY statement has one of the forms:

px ENTRY( par 1 i st ) [rETURNS( rd )] ;

px ENTRY( ) [RETURNS( rd )] ;

px ENTRY [RETURNS( rd )] ;

where px is the pref i x, par 1 i st is the parame ter list, and .rd is the resu Lt 
descri ptor. An ENTRY statement is the same as a PROCEDURE statement except for 
the following points:

• The ENTRY statement does not appear at the beginning of a procedure;
instead, it can occur at any point in the body of the procedure. It
is used when more than one entry point is required for a procedure.

• The prefix of an ENTRY statement must not contain a condition prefix. 

The last exception is present because the condition prefixes are given, once and 
for all, in the PROCEDURE statement that begins the procedure.

The execution of an ENTRY statement causes no action; its sole purpose is 
to define an entry point to a procedure. Thus when an ENTRY statement is 
encountered by sequential flow of control through the procedure, the ENTRY 
statement has no effect and control continues to the next statement.
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AN EXAMPLE OF A MULTIPLE-ENTRY PROCEDURE

Two or more procedures can be usefully combined into a single procedure 
when they have statements or data in common. The following procedure has two 
entries, one for use with two arguments, and the other for use with one 
argumen t.

P2A: PROC(X,YPAR);
DCL (X,YPAR) FLOAT;
DCL Y FLOAT;
Y = YPAR;
GOTO START;

P1A: ENTRY(X);
Y = 1;

START:
END;

This procedure has two entries. The first entry has two arguments. The second 
entry has only one argument and provides the value 1 for the second argument. 
The handling of the parameters seems awkward, but the following simpler version 
is not valid.

P2A: PROC(X,Y);
DCL (X,Y) FLOAT;
GOTO START;

P1A: ENTRY(X);
Y = 1;

START:
END;

This program is invalid because when it is invoked at its second entry, P1A, it 
uses the parameter Y which is not defined for that entry.

The RETURN Statement

The RETURN statement has one of the following forms:

RETURNC re );

RETURN;

where re is the re tu rn express i on. The first form is a valid exit statement for 
a procedure that was invoked by a function reference; the second form, for a 
procedure that was invoked by a CALL statement.

The END Statement

The END statement has the following form:

END;

The purposes of the END statement are to indicate the end of a procedure (or a 
BEGIN block or a group) and to serve as an exit statement for a procedure. An 
END statement is a valid exit statement for a procedure only if the procedure 
was invoked by a CALL statement.
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ENTRY REFERENCES AND DECLARATIONS

The entry reference of a CALL statement or a function reference specifies 
the entry point for the invoked procedure. In order to process the entry 
reference completely, however, the compiler must be supplied additional 
information, including the storage types of any parameters and return value. 
This information is supplied, basically, in one of two ways: in an ENTRY or 
PROCEDURE statement; or, in a DECLARE statement. The manner in which it is 
supplied depends on the kind of entry reference that is used.

An entry reference is usually a constant reference to an entry point in the 
same external procedure. That case is handled in a simple way in PL/I, and the 
examples given thus far have all used that kind of entry reference. In what 
follows, the constant entry reference is given further consideration and then 
other kinds of entry references are introduced.

Constant Entry References

An entry reference can designate an 
procedure, in a different external procedure, 
case requires special consideration when 
reference.

entry point in the same external 
or in a non-PL/l procedure. Each 
the entry reference is a constant

ENTRY POINTS IN THE SAME EXTERNAL PROCEDURE

When a constant entry reference designates an entry point that is within 
the same procedure, the compiler can obtain the information it requires from the 
designated PROCEDURE statement or ENTRY statement. Therefore, no additional 
declaration is required. This consideration applies to external entry names in 
the same procedure as well as internal entry names.

ENTRY POINTS IN ANOTHER EXTERNAL PROCEDURE

When a constant entry reference designates an entry point that is in 
another external procedure of the program, the compiler cannot obtain 
information directly about the parameters and the returned value because 
external procedures are compiled separately. Therefore, the programmer should 
consult the invoked entry point, obtain the information, and declare the entry 
name in the procedure in which it is called by means of a DECLARE statement.

Use of the DECLARE statement in this case is required for a function 
reference. It is not required for a CALL reference, but it is strongly advised 
on the basis of earlier discussions under ’’Guidelines for Arguments”, in this 
section, and ’’Constant References” in the section on ’’Expressions”.

The DECLARE
attr i butes:

statement for the ENTRY constant name must have the fol lowing

An ENTRY attribute with parameter descriptors. The keyword ENTRY is 
followed by a parenthesized list of descr i ptors, one for each of the 
parameters at the entry point. The descriptor is obtained from the 
declaration of the parameter by deleting attributes that are not part 
of the storage type and deleting any names of members of a structure.
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The RETURNS attribute (if one appears at the invoked entry point)

When an ENTRY name is declared in this way, its scope and category are assumed 
to be EXTERNAL CONSTANT.

/

As an example of the declaration of a constant name that designates an 
entry point in another external procedure, consider the following program:

P: PROC;
DCL B3 ENTRYC01 DIM(*),

02 FLOAT,
02 FLOAT, 

FIXED)
RETURNS(FLOAT);

DCL (I,J) FIXED;

I’= B3(0,J);

END;

B3: PROC(A,B) RETURNS(FLOAT) RECURSIVE;
DCL 01 A(*),

02 QI FLOAT,
02 Q2 FLOAT;

DCL B FIXED;
• • •
END;

Because of the DECLARE statement at the beginning of the first external 
procedure, P, the compiler can compile the procedure separately and yet produce 
the correct code for the statement I=B3(0,J);.

ENTRY POINTS IN A NON-PL/I PROCEDURE

When a constant entry reference designates an entry point of a procedure 
written in a language other than PL/I, the same constant entry declaration as 
used for entry points in another PL/I external procedure is needed. However, 
there are special OPTIONS attributes which may also be required.

The reason for the OPTIONS attribute in an entry declaration is to instruct 
the compiler to provide for a different way of passing arguments to the entry. 
(Concerning the question of appropriate storage types to be used for the 
parameter and result descriptors, refer to the PL/I User’s Guide in the sections 
on ’’Linking PL/I and Other Languages” or ’’Internal Representation of PL/I 
Data”.)

Additional OPTIONS Attributes

The OPTIONS attribute has already been discussed in connection with the 
PROCEDURE statement. The OPTIONS attributes described here, however, can appear 
only in the declaration of non-PL/l entry points. The OPTIONS attribute, in 
this case, has one of the following forms:

OPTIONS (VARIABLE)

OPTIONS (GMAP)
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OPTIONS (FORTRAN)

OPTIONS (COBOL)

The OPTIONS (VARIABLE) attribute indicates that the entry may be called at 
different times with a different number of arguments or arguments of different 
storage types, or both. In such a case, the compiler generates instructions to 
pass not only the arguments but also descriptors for each argument that identify 
the storage type and scale, precision, extent, etc., of each argument (or each 
member of a structure argument).

If no parameter attributes are provided on an ENTRY declaration and a call 
is made to that entry with arguments, the compiler issues a warning to note that 
the entry is treated as if OPTIONS (VARIABLE) were specified for it and provides 
the descriptors that this attribute indicates.

The OPTIONS (GMAP), OPTIONS (FORTRAN), or OPTIONS (COBOL), attribute 
indicates that the entry expects arguments to be passed in a way specific to the 
attributed language and different than expected by a PL/I procedure. In such 
cases, the PL/I compiler generates instructions to pass arguments in a way 
appropriate to the language.

Both the OPTIONS (VARIABLE) and a language option, 
be attributed to the same entry by writing both options,

say OPTIONS (GMAP), 
for example:

may

OPTIONS (GMAP) OPTIONS (VARIABLE)

or
OPTIONS (VARIABLE) OPTIONS (GMAP).

In such cases, arguments and descriptors are passed in a way appropriate to 
the language. Naturally, the procedure written in the other language must 
expect descriptors to accompany the arguments.

Variable Entry References

When an entry reference is a variable reference, the compiler cannot ootain 
information directly about parameters and RETURNS attribute because it cannot 
predict which entry point wi11 be designated by the entry reference. Therefore, 
the programmer must include the required information in the declaration of the 
variable name.

The declaration of an entry variable reference must include the following 
attributes:

• An ENTRY attribute whose parameter descriptors agree with the 
parameter declarations of every entry point that will be designated by 
the entry reference.

• A RETURNS attribute that is identical to that given (if any) for every 
entry point that will be designated by the entry reference.

• The category attribute VARIABLE.

The category attribute must be given because the default is CONSTANT when the 
data type is ENTRY. The scope, storage class, and INITIAL attributes can be 
chosen according to considerations that would govern the declaration of any kind 
of var i ab1e.
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During execution of the program, the evaluation of a variable entry 
reference must yield an ENTRY value that designates a valid entry point.

AN EXAMPLE OF AN ENTRY VARIABLE REFERENCE

As an example of the use of an entry variable reference, consider the 
following program:

P: PRO C•
DCL V ENTRY(DIM(10) FLOAT,FIXED) 

RETURNS(FLOAT) STATIC VARIABLE;
DCL VX ENTRY VARIABLE;
DCL A(10) FLOAT;
DCL (M,N) FIXED;

IF*M=0 THEN VX = Fl; ELSE VX = F2; 
• • •
V = VX;

N = 3*V(A,3)+1;

Fl: PROC(A1,B1) RETURNS(FLOAT) RECURSIVE;
DCL Al(lO) FLOAT;
DCL Bl FIXED;
• • •
END;

F2: PROC(A2,B2) RETURNS(FLOAT) RECURSIVE;
DCL A2(10) FLOAT;
DCL B2 FIXED;
• • •
END;

END;
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The program uses ENTRY variables as follows:

At the top of.the.program, V is declared as an ENTRY STATIC VARIABLE 
without an initial value. The remainder of the declaration is 
included not to describe the storage used for the variable but rather 
to allow the use of the variable as an entry reference.

Next VX is declared ENTRY. Since this variable is not used as an 
entry reference, parameter descriptors and RETURNS attribute are 
omitted from its declaration.

At some time during the program, the IF statement assigns the ENTRY 
value designated by the constant name Fl or F2 to VX.

Later, the value of VX is assigned to V.

Each time the assignment to N is encountered, the variable name V is 
used as an entry reference. The declaration of V allows the compiler 
to determine whether the arguments are by-name or by-value and to 
determine the storage type of the returned result (and thus of the 
function reference V(A,3) itself).

Function Entry References

When an entry reference is a function entry reference, the programmer must 
include parameter descriptors and RETURNS attribute in the RETURNS attribute of 
the function name.

AN EXAMPLE OF AN ENTRY FUNCTION REFERENCE

As an example of the use of an entry function reference, consider the 
following program:

P: PROC;
DCL A(10) FLOAT;
DCL (M,P) FIXED; 
• • •
P = .3*E(M)(AZ 3) + l;
• • •

E: PROC(A) RETURNS(ENTRY(DIM(10) FLOATZFIXED)
RETURNS(FLOAT));

DCL A FIXED;
IF A=0 THEN RETURN(Fl); ELSE RETURN(F2);
END;

Fl: PROC(A1ZB1) RETURNS(FLOAT) RECURSIVE;
DCL AH10) FLOAT;
DCL Bl FIXED; 
• • •
END;

F2: PROC(A2ZB2) RETURNS(FLOAT) RECURSIVE;
DCL A2(10) FLOAT;
DCL B2 FIXED; 
• • •
END;

END;
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Compare this program to the example given for variable entry references. In 
this program, the selection between Fl and F2 still depends on M, but it is 
carried out by a function reference, E(M).

Generic Entry Names

A generic entry name is used to designate one of a set of entry points. 
The programmer specifies, in the declaration of the generic entry name, how. a 
single entry point is selected for a particular use of the name. The selection 
is done during compilation, and it is based on the attributes of the arguments 
that accompany a particular use of the name.

AN EXAMPLE OF A GENERIC ENTRY NAME

As an example of the declaration and use of a generic entry name, consider 

the program:

P• PRO C *
DCL Q GENERIC (QI WHEN (FIXED), Q2 WHEN (FLOAT));
DCL QI ENTRY (FIXED), Q2 ENTRY (FLOAT);
DCL A FIXED, B FLOAT;

CALL Q (A);

CALL Q (B);

QI: PROC (N);
DCL N FIXED;
• • •
END;

Q2: PROC (N);
DCL N FLOAT;
• • •
END;

END;

Presumably, procedures QI and Q2 perform essentially the same service but for 
different types of arguments, one for fixed and the other for float, 
respectively. During the compilation of the program, the CALL Q(A) is replaced 
by CALL Q1(A), and the CALL Q(B) by CALL Q2(B). Thus all references to Q are 
e1i mi na ted.

The full description of the generic entry name is given in the PL/I 
Language Manual. The facility is not described fully here because its 
usefulness is limited.
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RECURSIVE PROCEDURE EXECUTION

Sometimes a procedure is invoked when a previous invocation is still 
active. Such a procedure is recurs i ve. Recursion can be di rec t or cha i ned. 
Direct recursion results if the body of a given procedure contains a CALL 
statement or function reference that invokes the given procedure. Chained 
recursion occurs when a procedure A invokes a procedure B that invokes a 
procedure C and so on until a procedure invokes procedure A. In either case, 
the keyword RECURSIVE should be used in the PROCEDURE statement at the beginning 
of the procedure.

When a procedure is executed recursively, the procedure has more than one 
ac t i va t i on internal region. These are the storage regions that, in the GCOS 
implementation of PL/I, are the s tack frames. An activation region is used for 
AUTOMATIC variables, for the extent values of DEFINED variables, for the 
pointers associated with PARAMETER variables, and for various system temporaries 
required for the evaluation of expressions, return from a procedure, and so on. 
A complete description of the role of activation regions is given earlier, in 
the section on "Storage Management".

The description of recursion that follows covers two kinds of recursion, 
surface and genera 1. Surface recursion is a slightly restricted form of 
recursion whose rules are much easier to learn than those for general recursion. 
General recursion is, by definition, the unlimited use of recursion in PL/I and 
includes surface recursion as a special case. As part of the description of 
these two kinds of recursion, many examples are given. Most of the examples are 
chosen to illustrate the rules of recursion, not to provide examples of the 
practical use of recursion. However, the description of surface recursion^ends 
with a practical program that is a very simple but otherwise realistic compiler.

The subject of recursion is not of equal interest to all programmers, and 
the following remarks describe three different levels of interest:

Most scientific programs and nearly all business programs.do not use 
recursion at all. If the reader does not plan to write recursive 
programs, he can skip the remainder of this section.

Surface recursion is adequate for many recursive problems. Surface 
recursion excludes certain uses of statement address variables and 
certain uses of ON statements. If the reader does not. plan to go 
beyond surface recursion, then he can skip the description of general 
recu r s i on.

General recursion permits a few operations that are not possible in 
surface recursion. If the reader plans to use those operations or 
simply wants to know everything about PL/I, then he should read the 
complete description of recursion.
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Surface Recursion

A recursive program uses only surface recursion if all of the following 
statements are true:

The program does not obtain the POINTER value that designates an 
AUTOMATIC variable during one activation of a block and then use that 
POINTER value to locate the AUTOMATIC variable during a later 
activation of the same block.

The program does not obtain a statement address value (ENTRY, FORMAT, 
or LABEL value) during one activation of a block and then use the 
value to locate a statement during a later activation of the same 
block.

• The program does not establish an ON unit during one activation of a 
block and then signal the ON unit during a later activation of the 
same block.

In these statements, the phrase ’’activation of a block” refers either to the 
invocation of a procedure or the execution of a BEGIN block.

At certain points in the execution of a recursive program, a name must be 
interpreted as a reference to a storage unit in an activation region. However, 
the interpretation of a name given in the section on ’’Dec 1 ar a t i ons” yields only 
the declaration of the name and the block in which its declaration is 
established. An additional rule is required to select one of the several 
activation regions for the given block. The general rule is complicated, and 
depends on extensions to the interpretation of several features of PL/I. 
However, the following special rule can be given:

In a program that is restricted to surface recursion, any reference to 
an activation region for a given block uses the most recent 1y created 
activation region that exists for that block.

Thus the interpretation of a program with surface recursion is scarcely more 
complicated than the interpretation of a nonrecursive program.
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AN EXAMPLE OF RECURSION WITHOUT ARGUMENTS

The following program uses surface recursion to print a symmetrical list of 
i ntege rs :

Rl: PROC;
DCL (SYS IN,SYSPR I NT) FILE;
DCL N FIXED;
GET LIST(N);
CALL SEQ;

SEQ: PROC;
DCL I FIXED;
I = N;
PUT SKIP LIST(I);
IF N > 1 THEN

DO;
N = N-l;
CALL SEQ;
END;

PUT SKIP LIST(I );
END;

END;

When this program is executed and the input value is 3f the output is:

3
2
1
1
2
3

Thus the program prints the integers from the given value down 
from 1 back up to the given value.

to 1 and then

This program uses neither statement address variables nor ON statements, so 
it is immediately recognized as a case of surface recursion. The program is 
short and simple and therefore it is practical to describe its execution in 
detail, as foilows:

1. Prepare for Program Execution. The external and static regions for 
the entire program are created. Two FILE constant storage units are 
allocated in the external region. Then Rl is invoked.

2. Start Execution of Rl. The activation region for Rl is created, and 
storage for N is allocated in the region. The GET statement reads an 
input value (which is assumed to be 3) and assigns it to N. The CALL 
statement invokes SEQ, which is executed as follows:

a. Start the First Execution of SEQ. An activation region is 
created for SEQ and storage for the automatic variable named I is 
allocated in it. The value of N is assigned to I and is printed 
as the first line of the output. Since N is greater than one, 
the value of N is reduced by one and then the CALL statement 
invokes SEQ, which is executed as follows:
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1. Start the Second Execution of SEQ. A second activation
region i s created for SEQ and storage for the automatic
variable named I is allocated in it. (Now there are two 
variables named lz and the rule for surface recursion must 
be applied to select one of them.) The value of N is 
assigned to I in the most recently created activation region 
for SEQ and is printed as the second line of output. Since 
N is still greater than one, the value of N is reduced by 
one and then the CALL statement invokes SEQZ which is 
executed as follows:

A. Start the Third Execution of SEQ. A third activation 
region is created for SEQ and I is allocated in it. 
The value of N is assigned to I in the most recently 
created activation region for SEQ and is printed as the 
third line of the output. Since N is not greater than 
one, the reduction of N and the recursive call of SEQ 
are skipped. Now the recursive calls begin to 
"unwind".

B. Complete the Third Execution of SEQ. The value of I in 
the most recently created activation region for SEQ is 
printed as the fourth line of output. The third 
activation region for SEQ is discarded.

2. Complete the Second Execution of SEQ. The value of I in the 
most recently created activation region for SEQ is printed 
as the fifth line of output. (Of course "most recently 
created" refers only to those activation regions that still 
exist.) The second activation region for SEQ is discarded.

b. Complete the First Execution of SEQ. The value of I in the 
activation region for SEQ is printed as the sixth line of output. 
The activation region for SEQ is discarded.

>

3. Complete Execution of Rl. The activation region for R1 is discarded.

In order to 
recursion, consider 
the third execution

see how activation regions are handled during surface 
the following diagram of storage just before the start of 
of SEQ:
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At this point in program execution, there are two activation regions for SEQ. 
According to the rule for surface recursion, a reference to I uses the one 
marked "activation 2".

AN EXAMPLE OF RECURSION WITH AN ARGUMENT

The preceding example program, named Rl, can be simplified by transmitting 
an argument to SEQ. The new version is:

R 2 * PROC*
DCL (SYS IN,SYS PR I NT) FILE;
DCL N FIXED;
GET LIST(N);
CALL SEQ(N);

SEQ: PROC(I);
DCL I FIXED;
PUT SKIP LIST(I);
IF I > 1 THEN CALL SEQ(I -1) ;
PUT SKIP LIST(I);
END;

END;

This program is "simplified" not only because it is shorter, but also because, 
for an experienced programmer, it shows more clearly how the procedure SEQ 
depends on the environment in which it is called.

For each recursive invocation of SEQ, the program uses two system 
temporaries to transmit the argument. The temporaries play different roles, as 
fol 1ows:

e A FIXED temporary is used to hold the value of the argument 1-1 in the 
second call. In GCOS PL/I, the argument temporary is allocated in the 
activation region of the ca11i ng procedure; therefore, the (n_l)th 
activation region contains the argument temporary for the n.th 
invocation of SEQ.

• A POINTER temporary is used to link the parameter to the argument. A 
reference to the parameter I designates this parameter temporary, and 
the temporary, in turn, designates the storage unit for the, argument. 
The parameter temporary is allocated in the activation region for the 
cal 1 i ng procedure; therefore, the (n.-l)th activation region or SEQ 
contains the parameter temporary for the nth invocation of SEQ.

Observe that no argument temporary 
the argument N is transmitted 
points directly to N.

is required for the first call of SEQ because 
by-reference, and the parameter temporary thus
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In order to see how arguments are handled during surface recursion, 
consider the following diagram just before the start of the third execution of 
SEQ:

activation region, block 1 (named R2), activation 1______

FIXED 
N

activation region, block 2 (named SEQ), activation 1

*FIXED__________________________
I / N in block 1, activation 1 /

FIXED
(TEMP) / 2 /

activation region, block 2 (named SEQ), activation 2

*FIXED____________________________________
I / (TEMP) in block 2, activation 1 /

FIXED
(TEMP) / 1 /

The storage unit for the parameter, I, is given the data type * *FIXED to show 
that it holds a pointer to a FIXED storage unit. Because I is a parameter, a 
reference to I is interpreted as a reference to the storage unit designated by 
the pointer. The arrows in the diagram show how each parameter designates an 
argument storage unit. The storage unit designated (TEMP) is a system temporary 
used for the value of 1-1 in the second CALL statement in the program.

AN EXAMPLE OF CHAINED RECURSION

For an example of chained recursion, consider 
that was given as the first example of recursion 
same output i s:

once again the program R1 
A program that produces the

R3: PROC;
DCL (SYSIN,SYSPRINT) FILE;
DCL N FIXED;
GET LIST(N);
CALL SEQ;

SEQ: PROC;
DCL I FIXED;
I = N;
PUT SKIP LIST(I);
CALL TEST;
PUT SKIP LIST(I);
END;

TEST: PROC;
IF N > 1 THEN

DO;
N = N-l;
CALL SEQ;
END;

END;
END;
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There is no direct recursion in this version of the program: SEQ 
contain a call on itself and TEST does not contain a call on itself. 
SEQ calls TEST, and TEST calls SEQ, so recursion does occur.

does not
However,

A USEFUL RECURSIVE PROGRAM

The following program contains a recursive procedure, COMP, that is a 
rudimentary translator of expressions:

P: PROC;
DCL SYSPR!NT FILE;
CALL COMPC”(((A-B)/C)*(D+(E+F)) )"zl,0);
PUT SKIP;

COMP: PROC(S,I,N) RECURSIVE;
DCL S CHAR(*);
DCL I FIXED;
DCL N PIC”999";
DCL A CHAR(9) VAR I N I T I AL () ;
DCL C CHAR(l);
DCL K FIXED;
DO K = 1+1 BY 1;

C = SUBSTR(S,K,l);
IF C = "("

THEN DO;
CALL COMP(S,K,N);
A = A!!"T”!IN;
END;

ELSE IF C = ")" 
THEN DO;

N = N+l;
PUT SKIP LIST(”T”! IN! !"="! !A!
I = K;
RETURN;
END;

ELSE A = AH C;
END;

END;
END;

The program Fs set up for a test run 
invokes COMP on an expression that is

of the COMP procedure. The main procedure 
given as a character string; namely:

(((A-B)/C)*(D+(E + F) ))

The output of the recursive execution of COMP is:

T001=A-B;
T002=T001/C;
T003=E+F;
T004=D+T003;
T005=T002*T004;

Thus each operator in the given expression is compiled into a PL/I statement.
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the
The following assertions about variables help 

P rocedu re:
to explain the execu t i on of

S contains the parenthesized expression that is to be translated into a 
sequence of assignment statements. Its value does not change 
throughout the program. In fact, for each invocation of COMP, S 
designates the same storage unit; namely the temporary that is 
allocated for the argument of the first invocation.

designates the ’(’ that begins the parenthesized expression within S 
that is to be translated by a particular invocation.

N contains the number of the most recently used name in the series T001, 
T002, and so on.

A contains the character string that represents the assignment statement 
that is being formed by the current invocation of the procedure. The
variable is AUTOMATIC; otherwise the procedure would not work. For
example, the initial invocation of the procedure proceeds as follows:

set A to ""
invoke COMP to compile ”((A-B)/C)” 
set A to "TOO?”
invoke COMP to compile "(D+(E+F))" 
set A to "TOO2*T004"

Clearly the intermediate values of A would be lost if A were not 
allocated for each new invocation.

C contains the current character in the scan of the given expression. 
The variable is AUTOMATIC, but need not have been because there is no 
recursive call between its setting and its last use.

K designates the current character for a given execution of the body of 
the DO group; it controls the scan of the parenthesized expression. 
It is set to 1+1 in order to skip the initial ’(’.

In order to study the procedure, simulate an invocation until the recursive call 
is reached. Instead of following that call, assume that it returns the correct 
result and complete the simulation of the current invocation.

General Recursion

Rules for the interpretation of general recursion are given here. The 
rules introduce extra steps into the execution of a program. These steps are 
essential if the program uses general recursion; otherwise, they have no effect 
on the final outcome. Thus the rules can be applied to all programs or just to 
those that use general recursion. In fact, the GCOS implementation of PL/I does 
not determine the recursive properties of a program but rather applies these 
rules to all programs. In contrast, a programmer who is studying a given 
program should probably ignore these rules unless the program uses general 
recurs i on.
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General recursion requires special treatment of certain address values. 
The discussion that follows begins with the description of the activation i ndex, 
which is used in an address value to designate an activation region. The 
discussion continues with a few paragraphs that explain the use of a POINTER 
value that has an activation index. The remainder of the discussion is devoted 
to statement address values: the paren t i ndex is introduced, rules for the use 
and setting of parent indexes are given, and several examples are included.

ACTIVATION INDEXES

A particular activation region is designated by adding an act? va t i on i ndex 
to the designation for the block. Such an activation index is essential for a 
POINTER variable that designates an AUTOMATIC variable and for every statement 
address value. Consider, for example, the value described by ”X in block U,
activation 2”. Depending on the dec 1arat i on of X, this address value is
i n ter pre ted as foilows:

If X is an AUTOMATIC variable name, then the value is a POINTER value 
that designates the storage unit named X in the second activation of 
block 4.

If X is a statement name, it designates the statement named X 
immediately contained in block 4 and, further, it specifies the 
interpretation of that statement within the second activation of block 
4.

The way in which these values are generated and used is described later in this 
discussion of general recursion.

POINTERS

A POINTER value that points to storage in an activation region can be 
formed only by the application of the ADDR function to a reference to an 
AUTOMATIC variable. The argument of the ADDR function is interpreted to locate 
a specific variable in a specific activation region; then that information is 
expressed as a POINTER value. When general recursion is present, the POINTER 
value must include an activation index.
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Once a POINTER value is formed, it can be assigned to a POINTER variable or 
returned as the result of a procedure. When, eventually, the POINTER value is 
used, it refers to the activation region that is specified by the activation 
index, even though that activation region may no longer be accessible in other 
ways. The following example illustrates this case.

An Example of Pointers

As an example of the formation and use of a POINTER value when general 
recursion is present, consider the following program:

QI: PROC OPT IONS(MA IN);
DCL SYSPRINT FILE;
DCL N FIXED STATIC INITIAL(l);
DCL I FIXED;
DCL IB BASED(IP);
DCL IP POINTER STATIC;
I = N;
IF N = 1 THEN IP = ADDR(I);
PUT SKIP L1ST (I,IB);
N = N + l;
IF N < 3 THEN CALL QI;
END;

The output of this program is:

Each number on each line of this output represents the value of a variable named 
I. However, the first number in a line is taken from the variable that is 
allocated in the most recently created activation region, whereas the second 
number is taken from the variable that is allocated in the first (and least 
recently created) activation region.

The program is invoked three times, the first time by GCOS and the second 
and third times by itself, recursively. During the first, second, and third 
invocations, the value of N is 1, 2, and 3, respectively; and during each 
invocation, the current value of N is assigned to a variable named I that is 
allocated in the first, second, or third activation region. The important 
feature of the program is the statement:

IF N = 1 THEN IP = ADDR(I);

The assignment to IP is performed only during the first execution of the program 
and therefore the value of IP designates the same allocation of I throughout the 
program, namely ”1 in block 1 (named Q2), activation 1”.
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Suppose the IF statement is changed to the following:

IF N < 3 THEN IP = ADDR(I);

Then the output of the program is:

Suppose, on the other hand, that the IF statement is changed to the following:

IF N = 2 THEN IP = ADDR(I);

Then the 
statement, 
the second

program is invalid because a reference is made to IP (in the PUT 
during the first invocation) before a value is assigned to IP (during 
i nvocat ion).

PARENT DESIGNATORS

In the presence of general recursion, each activation region must contain a 
P.a r e n t .designator. The parent designator in an activation region for a given 
block, designates one of the activation regions for the block that immediately 
contains the given block. The parent designator in an activation region for an 
external procedure has no purpose and can be ignored. A parent designator is 
used in interpreting a program but is not directly accessible from the program.

The parent designators are used in the definition of a current activation 
.reg i on for each block that contains the most recently activated block. The 
definition is as follows:

• The current activation region for the most recently activated block is 
the most recently created activation region.

• The current activation region for a block that immediately contains a 
given block is the activation region designated by the parent 
designator of the given block.

As an example of the use of this definition, let the most recently activated 
block of a program be called Bl; let the block that immediately contains Bl be 
called B2; let the block that immediately contains B2 be called B3; and let B3 
be an external procedure. Then the current activation region for each of these 
blocks is determined as follows:

The most recently created activation region for Bl is the current 
activation region for that block.

Suppose that the parent designator in the current activation region 
for Bl designates the third activation region for B2; then the latter 
is the current activation region for B2.

Suppose that the parent designator in the current activation region 
for B2 designates the first activation region for B3; then the latter 
is the current activation region for B3.
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Thus the parent designators form a sequence of activation regions that begins 
with the most recently activated block and ends at the containing external 
procedu re.

Observe that the blocks for which current activation regions are defined 
are exactly those blocks whose declared names can be referenced in the most 
recently activated block. The purpose of defining the current activation region 
is to resolve ambiguities that arise in the interpretation of certain references 
to those names. Such ambiguities arise in two cases: the interpretation of 
activation variable references and the evaluation of statement address constant 
names. Discussion of these cases follows.

Activation Variable References

Certain variables designate storage units that 
activation region. There are three such cases:

are al 1ocated i n an

i saAn AUTOMATIC variable reference 
allocated in an activation region.

A DEFINED variable reference may or may not designate a variable that 
is allocated in an activation region; however, each extent (array 
bound, maximum string length, or area size) for the variable is 
contained in a system temporary that is allocated in an activation 
region.

A PARAMETER variable reference designates a parameter 
contained in a system temporary that is allocated 
reg i on.

pointer that i s 
in an activation

In each case, the designated storage 
is associated with the block in which the 
is more than one such activation region, 
selecting the cu r ren t act i va t i on reg i on for

region that 
variable name is declared. If there 

then the choice is resolved by 
the block.

is allocated in an activation

Statement Address Constant References

The evaluation of a given statement address constant reference yields an 
ENTRY value, a FORMAT value, or a LABEL value. Earlier in this discussion, it 
was noted that such values must include an activation index. That activation 
index is chosen so that it designates the cur ren t acti vati on region for the 
block in which the name in the given reference is declared.

SETTING THE PARENT DESIGNATOR

An activation region is created when a PROCEDURE block, a BEGIN block, an 
ON unit, or a FORMAT statement is executed. For general recursion, the 
activation region must include a parent designator. Each of the four cases is 
described in the following paragraphs.
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The PROCEDURE Block

Part of the invocation of a procedure is the evaluation of an ENTRY 
reference. The resulting ENTRY value includes an activation region designator, 
and it is this designator that is used as the parent designator in the 
activation region that is created for the execution of the procedure.

The GCOS implementation of PL/I optimizes by avoiding the creation of a 
block activation region for certain procedures; however, the interpretation of 
the program is not changed. A programmer must be aware of this practice only 
when he examines stack frames directly. The compiler prints a message for each 
procedure that is compiled without an activation region.

As an example of procedure invocation in the presence of general recursion, 
consider the following program:

PROC;Q2:
DCL SYSPRINT Fl LE;
DCL N FIXED STATIC INIT(O);
DCL I FIXED;
DCL EV ENTRY VARIABLE STATIC INTERNAL;
N = N+l;
I = N;
IF N = 1 THEN EV = S;
PUT SKIP LIST(I);
CALL EV;
IF N < 3 THEN CALL Q2;
PROC;

S;

PUT LIST(I); 
END;

END;

The output of this program is:

1
1
1

1
2
3

Each line of the output is produced by outputting the value of I twice; once by 
a statement in the main procedure and once by a statement in S. The first value 
of I is always from the most recent activation region for Q2, whereas the second 
value of I is from the first (least recent) activation of Q2.

The following aspects of the program just given are particularly 
interesting:

• A value is assigned to the ENTRY variable only once; namely, during 
the first activation of Q2. Therefore, the value of EV is equivalent 
to "S in block 1 (named Q2), activation 1”.

9 The procedure S is invoked three times, once in each activation of Q2. 
Each time, the ENTRY value has the activation index "activation 1”, as 
just noted. Therefore, the parent designator in the activation region 
for S is always equivalent to "block 1, activation 1".

• Each time I is evaluated within S, the reference is to the current 
activation region for Q2. That activation region is specified by the 
parent pointer in the activation region for S, as just described, and 
is always activation 1.
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The BEGIN Block

When a BEGIN block that is not an ON unit is executed, the parent designator 
in the activation region that is created for the execution of the block is set 
to designate the most recent activation region of the block that immediately 
contains the given BEGIN block.

The FORMAT Statement

The invocation of a FORMAT statement is similar to the invocation of a 
PROCEDURE block, but a FORMAT statement is used in a very restricted way, as 
described in the section on ’’Stream I npu t/Ou tpu t”. Part of the invocation of a 
FORMAT statement is the evaluation of a FORMAT reference. The resulting FORMAT 
value includes an activation region designator, and that designator is used as 
the parent designator in the activation region that is created for the execution 
of the procedure.

In order to reduce execution cost, the GCOS implementation of PL/I avoids 
the creation of a block activation region for a FORMAT statement. This 
optimization technique does not change the interpretation of a program, and it 
can be ignored by a programmer who remains within the framework of the PL/I 
1anguage.

As an example of the invocation of a FORMAT statement, consider the 
following program:

Q3: P RO C •
DCL SYSPRINT F I LE;
DCL N FIXED STATIC INIT(O);
DCL I FIXED;
DCL FV FORMAT VARIABLE STATIC;
N = N+l;
I = N;
IF N = 1 THEN FV = F;
PUT SKIP ED I T(2, 2)(R(F),R(FV));
IF N < 3 THEN CALL Q3;
F0RMAT(E(12,I));
END;

The output of this program is

2.0E+000 2.0E+000
2.00E+000 2.0E+000
2.000E+000 2.0E+000

Each line of the output is produced by outputting the value 2 twice. Each 
output value is edited by the format statement F, but the format statement is 
invoked in two different ways and therefore the parameter I (which determines 
the number of digits after the decimal point) is evaluated in different 
activations. Specifically,

The reference R(F) always causes the format statement to be evaluated 
within the most recent activation of Q3 so the value of I is 1, 2, and 
3.
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The reference R(FV) causes the format statement to be evaluated within 
the activation specified in the FORMAT variable. Observe that the 
format variable is set only in the first activation of Q3. Therefore 
invocations of the FORMAT statement use the first activation region of 
Q3 and I i s 1.

The ON Unit

When an ON statement is executed, it establishes (but does not execute) an 
ON unit for a given condition. As part of this action, the designation of the 
ON unit is associated with the given condition and saved. For the purposes of 
general recursion, the designation of the most recently created activation 
region for the block that immediately contains the ON statement is also 
associated with the condition and saved.

When a condition is signalled for which the program has established an ON 
unit, the most recently established ON unit is executed. As part of that 
execution., an activation region for the ON unit is created (regardless of 
whether the ON unit is a BEGIN block or a single statement). The parent pointer 
in that activation region is the activation region designator that was saved 
when the ON unit was established.

As an example of the invocation of an ON unit, cons i der the fol lowing
program:

QU: PROC;
DCL (SYS IN,SYS PR I NT) FILE;
DCL N FIXED STATIC INlT(0);
DCL I FIXED;
DCL K FIXED;
DCL CONV COND;
N = N+l;
I = N;
IF I = 1 THEN ON CONV PUT SKIP LIST("***", I);
GET LIST(K);
PUT LIST(I);
IF I < 3 THEN CALL QU;
END;

9

Suppose the input for this program is:

6 5 FOUR

Then the output of the program is:

1
2
★ *
3

1

Since the ON condition is established during the first invocation of QU, its 
associated activation index is "activation 1". During the third activation of 
QU, the unacceptable input item, ’FOUR’, is encountered, and the CONVERSION 
condition is signalled. The ON condition is invoked, but the parent designator 
in its activation region is equivalent to "block 1 (QU), activation 1". For 
that reason, the ON unit prints out a 1.
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THE GOTO STATEMENT

Part of the execution of a GOTO statement is the evaluation of a LABEL 
reference. The resulting LABEL value includes an activation region designator. 
The GOTO statement causes exits from any block activations that are more recent 
than the block activation that is associated with the activation region 
designated by the LABEL value; then execution resumes at the designated 
statement.

As an example of the interpretation of a GOTO 
general recursion, consider the following program:

statement in the presence of

Q5: PROC;

GOTO LV;

DCL SYSPRINT F1LE;
DCL N FIXED STATIC INIT(O);
DCL 1 FIXED;
DCL LV LABEL VARIABLE STATIC;
N = N + l;

1 = N;
1 F 1 = 1 THEN LV = EXIT;
1 F 11 < 3 THEN CALL Q5;
PUT SKIP LIST(1);

EXIT: END;

The output of this program is:

3

The LABEL variable LV is set during the first invocation of the procedure to a 
value equivalent to "EXIT in block 1 (named Q5), activation 1". During 
activation 3 of the procedure, the GOTO statement is executed for the first 
time. The effect is an exit from activations 3 and 2 of Q5 and a transfer to 
the statement labelled EXIT.

As a rather different example of the interpretation of a GOTO statement,
consider the following program:

Q6: PROC;
DCL SYSPRINT FlLE;
DCL N FIXED STATIC INIT(O);
DCL I FIXED;
DCL EV ENTRY VARIABLE STATIC I NT;
N = N + l;
I = N;
IF N = 1 THEN EV = S;
IF N < 3 THEN CALL Q6;
PUT SKIP LIST(I);
CALL EV;

S: PROC;
GOTO EXIT;
END;

EXIT: END;
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Once again the output of this program is a single line:

3

The statement address constant reference, EXIT, in the GOTO statement is 
evaluated during the third activation of the procedure Q6 in which EXIT is 
declared. However, its value is not ’’EXIT in block 1 (named Q6), activation 3”. 
Instead, when S is invoked (for the first and last time), the parent designator 
in its activation region is ’’block 1 (named Q6), activation 1”. Therefore, the 
cu r r en t activation r eg i on of Q6 during the execution of S is the first 
activation region and the value of EXIT is ’’EXIT in block 1, activation 1”. 
Just as in the previous example, the GOTO statement causes an exit from 
activations 3 and 2 of Q6 and a transfer to the statement labelled EXIT in 
activation 1.
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SECTION XIII 

condition HANDLING

the
pe rformed.

or a 
cases

perform an

as an
cases, some 
cannot be

Sometimes a program instructs the process 
cannot, be performed. In this situation, 
cond i t i on, or simply a c_ond i t i on , has occurred. In some cases, the 

condition is an error, as with an attempt to divide by zero, 
the occurrence of a condition communicates the state of an exte

The PL/I processor can handle exceptional conditions by itself; in that 
case, it will, for most conditions, print an error message and abort the 
program. However, the PL/I language permits the programmer to supply a 
programmed response, called an ON unit, to the condition. In fact, the 
facilities for handling conditions are quite elaborate. These facilities are 
the subject of this section.

IH_E_PRI NCI PAL FEATURES OF CONDITION HANDLING

To handle a condition, the programmer first declares the condition by means 
of a DECLARE statement. Next, he enables the detection of the condition by 
means of. a condition prefix unless the condition is already enabled. Finally, 
he estab 1ishes.an ON unit for the condition by means of an ON statement. If the 
condition is signalled during the execution of the program, the established ON 
unit is execu ted.

As an example of condition handling, consider the following program:

P: PROC;
DCL ENDFILE COND;
DCL (SYS IN,SYSPRINT) FILE;
DCL X FLOAT;
ON ENDFILE(SYSIN) GOTO EXIT;

LOOP: GET LIST(X);
PUT LIST(X,X**2);
GOTO LOOP;

EXIT: END;

This program illustrates the handling of the ENDFILE condition for the system 
input stream. First, the program declares ENDFILE as a condition name. The 
ENDFILE condition is always enabled, so the program does not enable it. Then 
the program establishes an ON unit for the condition reference ENDFILE(SYS IN). 
When the GET statement encounters an end-of-file, the ENDFILE condition is 
signalled for SYSIN and the established ON unit for that condition reference is 
executed. In this program, the established ON unit transfers control to the end 
of the program.
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CONDITIONS

The cond i t i on
conditions, namely:

hand ling facility of PL/I can be applied to two kinds of

Language-defined conditions 
Programme r-defined cond i t i ons

The 1anguage-def i ned cond i t i ons are defined as part of the PL/I language and 
detected by the PL/I processor during its execution of a program. The 
programme r-def ined condi t i ons are defined by the programmer and signalled by the 
program.

Language-Defined Conditions

The language-defined conditions are divided into four categories, as 
fol 1ows:

Computat i ona1
S torage
Termination
Input/Ou tput

The following paragraphs define each category and then give a brief description 
of each condition in the category. The description ends with a reference to the 
section of this manual in which a complete description can be found.

COMPUTATIONAL CONDITIONS

The compu ta t i ona1 cond i t i ons occur when errors are detected during the 
conversion of values or the evaluation of expressions. The computational 
conditions are the only conditions that can be enabled and disabled. A 
description of the enabling and disabling of conditions is given later in this 
section.

The condition reference for a computational condition is the condition name 
or its abbreviation. The computational conditions are summarized in the 
following list.

Condi t i on
Reference

CONVERSI ON
CONV

F I XEDOVERFLOW
FOFL

OVERFLOW 
0 F L

Descr i pt i on

occurs when an invalid character string or pictured value 
is converted to an arithmetic or bit-string value, as 
described in the section on "Conversion”.

occurs when the result of a binary fixed-point computation 
exceeds 71 digits, as described in the section on 
"Convers ion”.

occurs when the result of a floating-point computation is 
too large to be represented, as described in the section 
on ’’Convers i on” .

occurs when a value is assigned to a fixed-point target 
and the precision cannot accommodate the magnitude of the 
number, as described in the section on "Conversion”.
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STRINGRANGE
STRG

occurs when a designated substring is not completely 
contained in the string argument of a SUBSTR function 
reference or pseudo-variable, as described in the section 
on ’’Operations”.

STRINGSIZE 
STRZ

SUBSCRIPTRANGE 
SUBRG

UNDERFLOW
UFL

occurs when a character-string or bit-string is converted 
for a target whose length cannot accommodate the value, as 
described in the section on ’’Conversion”.

occurs when the value of a subscript exceeds the bounds of 
the dimension to which it corresponds as described in the 
section on ’’Expressions”.

occurs when the result of a floating-point computation 
is too small to be represented, as described in the 
section on "Conversion”.

ZERODIVI DE 
ZDI V

occurs when the divisor of a division operator is zero, as 
described in the section on "Expressions”.

STORAGE CONDITIONS

The s to rage cond i t i ons occur when the capacity of PL/1 storage is exceeded. 
In some cases, an ON unit can free storage and thus recover from a storage 
condition. If a storage condition is signalled and the established ON unit does 
not free sufficient storage, the condition is signalled again.

The cond i t i on 
storage conditions

reference for a storage condition is the condition name.
are summarized in the following list.

The

Cond i t i on 
Reference

AREA

STORAGE

Descr i pt i on

occurs when an attempt is made to allocate storage in an 
area variable that cannot supply the storage, as described 
in the section on "Storage Management”.

occurs when the stack segment is about to overflow or when 
the "system storage” in which CONTROLLED and BASED 
variables are allocated is full, as described in the 
section on "Storage Management”.
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TERMINATION CONDITIONS

The termi nation cond i t i ons occur when execution of a program is complete.

The condition reference for a termination condition is the condition name. 
The termination conditions are summarized in the following list.

Condi t i on 
Reference

FINISH

ERROR

Descr i pt i on

occurs when the main external procedure is terminated, as 
described later in this section.

occurs as a result of a fatal error in program execution, 
as described later in this section.

INPUT/OUTPUT CONDITIONS

The i npu t/ou tpu t cond i t i ons occur when an input/output operation requires 
special attention. Some of the input/output conditions indicate errors, but 
other conditions communicate a valid change in the status of the data set.

The condition reference for an input/output condition consists of the 
condition name followed by a parenthesized file reference. The input/output 
conditions are summarized in the following list.

Cond i t i on 
Reference Descr i pt i on

ENDFILE(fr)

ENDPAGE(fr)

occurs when an input statement attempts 
end-of-file on the referenced file, as 
sections on "Stream Input/Output" 
Input/Output".

to read past the
descr i bed i n the

and "Record

occurs when a PUT statement attempts to output a line 
that does not fit on the current page, as described in 
the section on "Stream Input/Output".

KEY(fr)

NAME(fr)

occurs when a KEY option specifies a key that does not 
exist in the referenced file or when a KEYFROM option 
specifies a key that already exists in the referenced 
file, as described in the section on "Record 
Inpu t/Ou tpu t".

occurs when an assignment is read from the referenced 
stream and the variable name does not match any of the 
variable names in the data list of the controlling GET 
statement, as described in the section on "Stream 
Inpu t/Ou tput".

13-4 DE05



RECORD(fr)

TRANSMIT(fr )

UNDEFINEDFILE(fr)

occurs when a READ statement reads a record from the 
referenced file that is not equal in size to the 
variable given in the INTO option, as described in the 
section on "Record Input/Output".

occurs when the data cannot be reliably 
between the referenced file and storage, as 
the sections on "Stream Input/Output" 
Input/Output".

transmi tted 
descr i bed in 
and "Record

occurs when an attempt to open the referenced file is 
unsuccessful, as described in the sections on "Stream 
Input/Output" and "Record Input/Output".

Programmer-Defined Conditions

The condition handling facility of PL/I can be used to define new 
conditions that are designed for the particular needs of a given programming 
application. By defining new conditions, a software system written in PL/I can 
provide its sub-systems with the capability of handling conditions.

CONDITION REFERENCES

In the discussion of conditions, a cond i t i on reference was given for each 
condition. The condition reference is used in the ON statement, the REVERT 
statement, and the SIGNAL statement to designate a condition. There are two 
kinds of condition references corresponding to the two kinds of conditions.

Language-Def ined Condition References

A language-defined condition reference must have one of 
forms:

the fol lowing

1 cn( fr )

where 1cn is a 1anguage-def i ned cond i t i on name and fr is the file reference. 
The language-defined condition name must be declared with the CONDITION 
attribute. For the first form the language-defined condition name must be one 
of the following identifiers:

AREA 
CONVERSION 
CONV 
ERROR 
FINISH

FlXEDOVERFLOW
FOFL
OVERFLOW
OFL
SIZE

STORAGE
STRINGRANGE
STRG
STRINGSIZE
STRZ

SUBSCRIPTRANGE
SUBRG
UNDERFLOW
UFL
ZERODIVIDE
ZDI V
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For the second form, the language-defined condition name must be one of the 
following identifiers:

ENDFILE KEY RECORD
ENDPAGE NAME TRANSMIT

The file reference must be a reference

UNDEFINEDFILE
UNDF

that yields a scalar file value.

Programmer-Defined Condition References

A programmer-defined condition reference must have one of the following 
forms:

CONDITIONC pen )

CONDITION pen

C0ND( pen )

COND pen

where pen is the p rog ramme r-def i ned condi t i on name. The programmer-defined 
condition name must be declared with the CONDITION attribute and must not be one 
of the identifiers listed as language-defined condition names in the preceding 
definition of language-defined condition references. The four forms of a 
programmer-defined condition reference are equivalent to one another.

THE DECLARATION OF CONDITION NAMES

Each condition name used in a program should be declared, as fo11ows:

DCL cn COND;

where cn is the condition name. The condition 
language-defined condition name or a programmer-defined

name can 
condition

be ei ther a 
name.

The only attribute that can be used with the CONDITION attribute is the 
scope attribute. In GCOS PL/I, every condition name must have EXTERNAL scope. 
Since this is the default scope for condition names, the scope attribute is 
omitted from the DECLARE statement.

ENABLING AND DISABLING CONDITIONS

The language-defined computational conditions can be enabled and disabled. 
When a condition that is enabled occurs, it is signalled and handled. When a 
condition that is disabled occurs, it may or may not be signalled.

The occurrence of a language-defined condition is detected either by the 
computer hardware or by additional code compiled into the program to test for 
the occurrence of the condition. When a condition that requires additional code 
for its detection is disabled, the resulting program requires 1 ess.stor age and 
executes more efficiently than a program for which the condition is enabled. 
However, if a disabled condition occurs in such a program, the program is 
invalid and the results of its continued execution are undefined.
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Cond i t i on Pref i xes

Condition prefixes are used to enable or disable language-defined 
computational conditions. The condition prefix must precede the label prefixes 
(if any) of a statement. The form of the condition prefix list is as follows:

(cpn, ...)

where cpn, ... is a sequence of conditionprefix names separated by commas. The 
possible condition prefix names are enab 1i ng prefix names and d i sab 1 i ng pref i x 
names. An enabling prefix name is any of the computational condition names or 
their abbreviations. A disabling prefix name is the characters NO followed by 
an enabling prefix name. The complete list of condition prefix names is:

Enabling Prefix Names Disabling Pref i x Names
Name Abbr. Name Abbr.

CONVERSION CONV NOCONVERSION NOCONV
FlXEDOVERFLOW FOFL NOFIXEDOVERFLOW NOFOFL
OVERFLOW
SIZE

OFL NOOVERFLOW
NOSIZE

NOOFL

STRINGRANGE STRG NOSTRINGRANGE NOSTRG
STRINGSIZE STRZ NOSTRINGSIZE NOSTRZ
SUBSCRIPTRANGE SUBRG NOSUBSCR!PTRANGE NOSUBRG
UNDERFLOW UFL NOUNDERFLOW NOUFL
ZERODIVIDE ZD! V NOZERODIVIDE NOZDIV

A condition prefix can begin any PL/I statement except the DECLARE, DEFAULT, or 
ENTRY statements.

The Scope of a Condition Prefix

A condition prefix applies to the statement to which it is attached. For 
most statements, the scope of the condition prefix is the entire statement; 
however, there are important exceptions, as follows:

Statement

PROCEDURE, 
BEGIN

I F

DO

ON

FORMAT

Scope

The condition prefix applies to all statements in the block 
that begins with the PROCEDURE or BEGIN statement except 
those statements that lie within the scope of another 
condition prefix for the same condition.

The condition prefix applies only to the test, which lies 
between the keywords IF and THEN; it does not apply to the 
cons equences.

The condition prefix applies only to the DO statement; it 
does not apply to the remaining statements of the DO group.

The condition prefix applies only to the condition 
reference; it does not apply to the ON unit that follows 
the condition reference.

The condition prefix applies only to calculations performed 
in the evaluation of the format specification list; it does 
not apply to associated GET or PUT statements or to any 
other FORMAT statements.
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As an example of the determination of the scope of a condition prefix, 
consider the following statement:

IF A(I,J) = 1
THEN A(I,J) = B(K,M);
ELSE A(I,J) = C( P,N);

To enable the SUBSCRIPTRANGE condition for the entire IF statement, it is 
necessary to apply the condition prefix to both the test and the consequences, 
as foilows:

(SUBRG):
IF A(I,J) = 1

THEN
(SUBRG): A( I,J) = B(K,M);

ELSE
(SUBRG): A( I, J) = C(P,N);

A different way of enabling the condition for the entire IF statement is to 
enclose the statement in a BEGIN block and then to apply the condition prefix to 
the block, as follows:

(SUBRG):
BEGIN;

IF A(I,J)
THEN A(I,J) 
ELSE A(I,J)

B(K,M);
C( P,N);

END;

In practice, a condition prefix is usually applied to a procedure block and thus 
the condition is enabled or disabled for the entire procedure.

Default Enabling and Disabling

If a statement does not lie within the scope of a condition prefix for a 
given condition, then the statement is interpreted under the defau1t enabling or 
disabling for the given condition, cs follows:

Enab 1ed by Defau1t

CONVERSION
FI XEDOVERF LOW 
OVERFLOW 
UNDERFLOW 
ZERODIVIDE

SIZE
STRINGRANGE
STRINGSIZE
SUBSCRIPTRANGE

These defaults are dictated by considerations of efficiency. The conditions 
that are detected by the hardware are enabled by default and the conditions that 
require additional instructions in the compiled program for their detection are 
disabled by default.
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An Example of Enabling and Disabling

As an example of enabling and disabling, consider the following program: 

(SUBRG):
P: PROC;

DCL (A,B,C)(50,100) FIXED;
DCL (I,J) FIXED;
• • •
B(I,J) = A(I,J)**2;

(NOSUBRG):
C(I,J ) = B(I,J)**2;

(NOSUBRG,SIZE):
C(J,I ) = C(I,J)**2;
• • •
END;

The SUBSCRIPTRANGE condition, which is disabled by default, is enabled for most 
of this program because of the ’(SUBRG):’ condition prefix on the PROCEDURE 
statement. However, SUBSCRIPTRANGE is disabled for the two assignments to the 
array C. Furthermore, the SIZE condition, which is disabled by default, is 
enabled for the last assignment statement.

ESTABLISHING AND REVERTING ON UNITS

A programmer has a choice between permitting the system to handle a 
signalled condition or writing a statement to handle the condition in a special 
way. The construct supplied by the programmer to handle the condition is an ON 
unit. An ON unit is gstabl i shed for a condition by the execution of an ON 
s ta temen t. When the condition is signalled, the established ON unit is 
executed.

In some cases, a single ON unit can be established to apply to all signals 
of a given condition. In other cases, the handling of the condition depends on 
the statement in which the condition occurs. In the second case, several ON 
units are established for a condition by the execution of several ON statements.

The establishment of an ON unit is associated with the current block 
activation. For a given block activation, at most one ON unit can be 
established at any time for each evaluated condition reference. Thus, for 
example, if an ON statement is executed for ENDFILE(SYS IN) and an ON unit for 
ENDFILE(SYS IN) is already established for the current block, the previously 
established ON unit is removed from the set of established ON units for the 
block before the current ON unit is added to the set. The execution of a REVERT 
statement removes an establ ished ON unit from the set and re-establishes a 
previously established ON unit (or the system supplied ON unit if there was none 
previously established for the condition).

The rules for determining the established ON unit for a signalled condition 
are given later in this section in ’’The Occurrence and Signalling of 
Condi t ions”.
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The ON Statement

An ON statement has one of the following forms:

ON cr ou;

ON cr SNAP ou;

where cr is the condition reference and where ou is the ON unit. The ON unit 
must be one of the following:

• A BEGIN block; that is, a BEGIN statement, followed by a sequence of 
statements, followed by an END statement.

• A re§ tr i c ted i ndependen t s ta temen t; that is, one of the following 
statements:

storage management: 

ass i gnmen t:

flow of con tro1: 

procedure invocation: 

condition handling;

i npu t/ou tpu t:

stream input/output: 

record input/output: 

The keyword SYSTEM

ALLOCATE and FREE

the assignment statement

GOTO and the null statement

CALL

SIGNAL

OPEN and CLOSE

PUT and GET

READ, WRITE, DELETE, REWRITE and LOCATE

An ON unit can contain a RETURN 
contained in a PROCEDURE block that is

statement only if the RETURN statement is 
contained in the ON unit.

When an ON statement is executed, the condition reference is evaluated and 
the ON unit* for that evaluated condition reference is established. The 
evaluated condition reference and a designator for the ON unit are added to the 
set of established ON units for the current block activation. The ON unit in 
the ON statement is not executed until the condition is signalled. If the ON 
unit consists of the keyword SYSTEM, the default ON unit is established.

If the keyword SNAP is included in the ON statement, a special information 
list is written on the standard output file just prior to execution of the ON 
unit. The list gives the procedure names in the chain of procedures which are 
active at the time the ON unit is invoked and for which separate block 
activation regions exist. Also given with each procedure name in the list are 
the data types and values of the arguments used in the call to that procedure. 
The list begins with the system setup routine followed by the main program, it 
may include subprograms or system support routines invoked by the program object 
code, and it ends with the system condition handling routines followed by the ON 
unit.
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The REVERT Statement

The REVERT statement has the following form:

REVERT cr, . . . ;

where cr is a condition reference.

When a REVERT statement is executed, the condition reference is evaluated 
and the ON unit for that evaluated condition reference is removed from the set 
of established ON units for the current block activation.

THE OCCURRENCE AND SIGNALLING OF CONDITIONS

A condition occurs as a result of the interpretation of the program by the 
PL/I processor. If a condition occurs when it is enabled, the condition is 
signalled and the established ON unit is executed. If a condition occurs when 
it is disabled, the program is invalid and the results of its continued 
execution are undefined.

If a SIGNAL statement for a condition is executed when the condition is 
enabled, the condition is signalled and the established ON unit executed. If 
the SIGNAL statement is executed when the condition is disabled, no action is 
taken and control passes to the next statement.

The Occurrence of Conditions

As an example of the occurrence of a condition, consider the following 
program:

PROC;
DCL (A,B,C) FIXED;
A = 1;
B = 5 - 5 * A;
C = A / B;
END;

The ZERODIVIDE condition occurs when the third assignment statement is 
interpreted by the PL/I processor. The ZERODIVIDE condition is enabled by 
default, so the condition is signalled. No ON unit is established for the 
condition, so the default ON unit is executed and the program halts with an 
error message.
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The detailed description in this manual for each condition states when the 
condition can occur. Some conditions/ however, are signalled from support 
subroutines when an error is detected or a limitation is exceeded. In these 
cases, the condition is signalled/ even if it is disabled in the PL/I program, 
because the signal originates from a support subroutine in which the condition 
is enabled. The following conditions belong to this category:

AREA
ERROR
FIXEDOVERFLOW
OVERFLOW
SIZE
STORAGE
STRINGSIZE
ZERODIVIDE

These conditions are described as conditions that can occur at anytime during 
the execution of the program.

As an example of a condition that occurs at an unexpected time, consider 
the following program:

P: PROC;
DCL N FIXEDC35) INIT(200000000);
DCL X FIXED;
DCL SYSPRINT FILE;
X = N;
PUT LIST(X) ;
END;

The assignment of N to X is invalid since the value of N cannot be represented 
in the precision of X. The SIZE condition occurs on this assignment. Because 
the SIZE condition is disabled by default in the procedure P, the condition is 
not signalled. However, the SIZE condition is enabled in the run-time 
conversion routines and is signalled when the PUT statement is executed.

The SIGNAL Statement

The SIGNAL statement has the following form;

SIGNAL cr

where cr is a condition reference.

Execution of the SIGNAL statement signals the condition if it is enabled. 
If the condition is disabled, no action is taken.
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Determining the Established ON Unit

descr«bed earl ier in this section under ’’Establishing and Reverting 
Conditions , each block activation has associated with it a set of established 

Uki ts.* Tbe set of established ON units for a block contains at most one 
established ON unit for an evaluated condition reference. When a condition is 
signalled, the established ON unit for that condition is determined in the 
following way:

1. Let the most recently activated block be the current block.

2. Examine the set of established ON units for the current block. If an 
established ON unit for the signalled condition is encountered, take 
that as the established ON unit.

If the current block is not the outer block, let the next most 
recently established block be the current block, and return to step 2. 
Otherwise, the program does not provide an ON unit, so take the 
default ON unit as the established ON unit.

Thus, the set of established ON units is searched, starting with the most 
recently activated block and proceeding back through the previously activated 
blocks.

THE ON UNIT

An ON un i..t specifies the action taken when a condition is signalled. The 
execution of an ON unit is similar to the execution of a procedure block. The 
ON unit is activated when the condition is signalled and, if control passes to 
the end of the ON unit, control is returned to the point at which the condition 
was signalled.

Some PL/I conditions are fa ta1 cond i t i ons, namely:

AREA (if caused by assignment)
ERROR
FIXEDOVERFLOW
OVERFLOW
SIZE
STORAGE
STRINGRANGE
SUBSCRIPTRANGE
ZERODIVIDE

If an ON unit for any of these fatal conditions returns to the point at which 
the condition was signalled, the program is invalid and the results of its 
continued execution are undefined.

If an ON unit executed as a result of the signalling of a condition during 
the evaluation of an expression returns to the point at which the signal was 
detected, the ON unit must not allocate, free, or assign a value to any 
generation of storage accessible at the point where the condition was detected.

If an ON unit is executed as a result of the signalling of a condition 
during the execution of a statement, the ON unit must not access the value of 
the variable changed by the execution of the statement.
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DefauIt ON Units

If no ON unit is established by the program for a condition at the time the 
condition is signalled, the system default for the ON unit is invoked.

In GCOS, the following default ON units are defined for the listed 
condi t i ons:

DefauIt ON UnitCond i t i on

on the standard output 
to the point at which the

Writes an error message 
file and returns control 
condition was detected.

NAME
UNDERFLOW

at which theReturns control to the point 
condition was detected.

STRINGSIZE

Writes an error message on the standard output 
file and ha 1ts.

ERROR

Closes any open files and returns to the point 
which the condition was detected.

FINISH

Writes an error message on the standard output file 
and signals the ERROR condition.

(other
1anguage-def i ned 

cond i t i ons)

Writes an error message on the standard output file 
and halts.

(programmer-def i ned 
cond i t i on s)

The ON Condition Built-In Functions

Seven built-in functions are associated with the condition handling 
capability of PL/I. The ON cond i ti on bu i 1t-i n functions are used to access 
system variables whose values are set by the system when a condition is 
signalled. These functions allow the programmer to obtain information for use 
in the ON unit that handles the condition. Some of the ON condition built-in 
functions can- be used as pseudo-variables and, thus, the ON unit handling the 
condition can change some system variable value.

Each ON condition built-in function is associated with a stack. When a 
condition that sets the value of an ON condition built-in function is signalled, 
the old value of the function is pushed down on the stack and the new value is 
placed on the stack. When control returns to the block activion in which the 
condition was signalled or to any of the dynamic predecessors of the signalling 
block, the value is removed from the stack. The stack provides for the 
possibility that the execution of an ON unit for a condition causes a condition 
to occur.

The ON condition built-in functions are given in the following list. For 
each function, the value of the system variable is given. Also listed are the 
names of all the conditions whose occurrence alters the stack.
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Built-In
Funct i on

ONLOC

ONCODE

ONCHAR

ONFIELD

ONFILE

ONKEY

ONSOURCE

The occurrence
ON condi t i on bu i1

If the cond i 
system variables

Bui 1t-ln
Function

ONCHAR

ONFIELD

ONFILE

ONKEY

ONSOURCE

System Variable Value

name of the most currently 
entered procedure block

error code value

leftmost character for which 
the conversion failed

Assoc i a ted 
Cond i t ions

al 1

al 1

CONVERSION

character string just 
extracted from the data 
stream

file name

NAME

CONVERSION, NAME, 
ENDFILE, TRANSMIT, 
RECORD, KEY, ENDPAGE, 
UNDEFINEDFILE

key value

string being converted

ENDFILE, TRANSMIT, 
RECORD, KEY

CONVERSION

of the ENDPAGE condition, for 
t-in functions ONLOC, ONCODE,

example, provides a value for the 
and ONFILE.

tion is signalled by the execution of a SIGNAL 
have the values given in the following list:

s ta tement, the

System Variable Value

blank

null string

null s tr i ng

null string

null string

Associ ated
Cond i t i ons

CONVERSION

NAME

CONVERSION, NAME,
ENDFILE, TRANSMIT, 
RECORD, KEY, ENDPAGE,
UNDEFINEDFILE

KEY, ENDFILE, 
TRANSMIT, RECORD

CONVERSI ON
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The ONKEY built-in function is assigned a value by the SIGNAL statement for the 
conditions ENDFILEZ TRANSMIT, and RECORD only if the file referenced has the 
keyed attribute.

A detailed description of the ON condition built-in functions is given 
earlier, in the section on "Operations". The ONCHAR and ONSOURCE functions can 
also be used as pseudo-variables. This use is described earlier, in the section 
on "Ass i gnmen ts".

AN EXAMPLE OF CONDITION HANDLING

As an example of condition handling, consider the following program:

P: PROC;
ON CONV

BEG IN;
... (print warning message) 
ONSOURCEO = "0";
END;

• • •
CALL Q;
• • •

Q: PROC;
DCL X FLOAT;
CALL R(X);
PUT SKIP;
PUT LIST(X,SIN(X));
ON CONV

BEGIN;
... (print warning message) 
ONSOURCE() = "1";
END;

CALL R(X);
REVERT CONV;
PUT LIST(X,1/X);
CALL R(X);
PUT SKIP LIST(X,X**2);
END;

R: PROC(Y);
DCL Y FLOAT;
GET LIST(Y);
END;

END;

The program P establishes an ON unit for the CONVERSION condition that prints a 
warning message and replaces the input string by the string "0". After some 
processing, the program P calls Q. The procedure Q calls the procedure R for 
input three times. The ON unit established by P is suitable for the first and 
third call on R, but for the second call on R a special ON unit is required.

The procedure R represents a genera 1 -purpose input program, which would, in 
practice, be more complex. The procedure R does not provide any handling for 
the CONVERSION condition because it cannot know the context of its call. The 
handling of the CONVERSION condition is entirely independent of the procedure in 
which it is signalled.
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GUIDELINES FOR CONDITION HANDLING

The condition handling facility of PL/I is used both in debugging a program 
and in. co ntrolling the exceptional conditions that can occur during progr am 
execution. Guidelines for both applications are given here.

Debugging

During the debugging of a program, conditions that 
can be enabled and special ON units can be established.

are normally disabled

ENABLING CONDITIONS FOR DEBUGGING

Four PL/I conditions provide additional error checking, namely; SIZE, 
STRINGSIZE, STRINGRANGE, and SUBSCRIPTRANGE. These conditions are normally 
disabled, since their detection requires the generation of additional code in 
the object program to perform the testing. For debugging, these conditions 
should be enabled by preceding each external procedure with the prefix:

(SIZE, STRZ, STRG, SUBRG):

When the program goes into production, the prefix should be removed.

ON UNITS FOR DEBUGGING

A useful debugging 
additional information 
s i gnal 1ed.

technique is the establishment of ON units 
about the state of the program when a

to prov i de
condition is

Sometimes the same ON unit is established for every condition; namely, one 
that calls a debugging routine or produces standard information. Sometimes a 
different ON unit is established for each condition to produce debugging 
information specific to the condition. Sometimes, several ON units are 
established for the same condition, so the information produced depends upon the 
point at which the condition is signalled.

Controlling Exceptional Conditions

The condition handling facility of PL/I is used to control exceptional 
conditions. The file communication conditions are expected to occur and, 
consequently, ON units are usually established to handle these conditions. The 
error conditions, on the other hand, occur unexpectedly and the handling of 
these conditions is usually done by the default ON units provided by the system.
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CONTROLLING FILE COMMUNICATION CONDITIONS

The ON unit established to handle a condition that communicates the status 
of an external file is part of the normal flow of a program. An example is a 
program that reads a file and uses an ON unit for the ENDFILE condition to 
transfer to the appropriate point in the program when the file is exhausted. A 
second example is a program that writes a report and uses an ON unit for the 
ENDPAGE condition to write a footing and heading on the report. A final example 
is a program that accesses a keyed file and uses an ON unit for the KEY 
condition to print a message and look in another file when the key is not found.

CONTROLLING ERROR CONDITIONS

Most programs do not establish ON units for the error conditions and if the 
condition is signalled, the default ON unit is executed. The default ON unit 
for most conditions prints an error message and terminates the execution of the 
program. In some cases, an alternative to the termination of the program can be 
defined. The following paragraphs consider these cases.

Input Data Validation

A program that reads input data often establishes an ON unit for the 
CONVERSION condition so that a bad input datum does not terminate the program. 
This ON unit can either report the bad input datum and read another or can 
attempt to correct the bad input.

Computational Checks

A program that is involved with computation often provides ON units for the 
OVERFLOW and UNDERFLOW conditions to change the course of an algorithm so that 
processing can continue.

Resource Management

A program that includes a system of storage 
provides an ON unit for the AREA condition.

management based on areas often

Large Independent Systems

A large independent system or programming environment must handle all the 
language-defined conditions in order to maintain control over the processing. 
Moreover, such a system often makes use of programmer-defined conditions so that 
its users have the option of handling app1ication-re1 a ted conditions.

GENERAL CONDITIONS

The termination conditions are described in detail in this section since 
these conditions are related to the condition handling facility of PL/I and not 
to any particular PL/I language construct.
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The ERROR Condition

The ERROR condition is signalled by the default ON units for several 
conditions, by the mathematical built-in functions, by the exponentiation 
operator, and by some run-time support routines.

The ERROR condition indicates a fatal error. If an ON unit for this 
condition attempts to return to the point at which the condition was signalled, 
the program is invalid and the results of its continued execution are undefined.

The default ON unit for the ERROR condition 
standard output file and terminates the program.

writes a comment on the

The FINISH Condition

The FINISH condition is signalled by the execution of a statement that 
causes exit from the main external procedure. A RETURN or END statement 
terminating the execution of the main external procedure signals the FINISH 
condi t i on.

The default ON unit for the FINISH condition closes any open files and 
returns to the point at which the condition was signalled. If termination 
resulted from the partial destruction of memory or exhaustion of resources, the 
FINISH condition is sometimes not signalled.
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SECTION XIV

STREAM INPUT/OUTPUT

In PL/I, the object from which input values are taken or to which output 
values are transmitted is called a data set. There are two kinds of data sets, 
stream and record/ and PL/I has a complete and independent input/output facility 
for each kind of data set. The facilities for stream input/output are oriented 
toward external media, such as line printers and card readers, and include 
elaborate features to assist the programmer in achieving a suitable format. In 
contrast, the facilities for record input/output are both more general and more 
primitive. This section describes the facilities for stream input/output, and 
the next section describes those for record input/output.

This section begins with a description of the two kinds of data that are 
involved in stream input/output: the strearn, which is the actual subject of the 
input or output, and the f i1e-s tate block, which shows the status of the 
operations on a stream. The section then gives a summary of the various 
operations that are performed as part of stream input/output. Once this 
foundation Is established, the section proceeds to a definition of the 
statements that are used for stream input/output: first, the statements that 
open and c1ose files, and then the statements that perform the actual input or 
output. Next, the section describes three different options for specifying the 
details of the format of stream input/output: data-di reefed, 1i st-di rected, and 
ed i t-d i rected. As the section nears its conclusion, a special feature of stream 
input/output, the string option, is presented. Finally, the section describes 
the conditions that occur in connection with stream input/output.

STREAM DATA SETS

The stream input/output statements operate on st r earn data s ets or, more 
concisely, streams. A stream is a sequence of data characters and control 
characters. PL/I does not specify exactly what characters can be used as data 
characters, since this depends on the particular computer system and the 
input/output devices being used; however, any implementation of PL/I might be 
expected to have the letters, the digits, the common punctuation marks, and the 
blank among its data characters. There are two PL/I control characters, the 
1i nema r k and the pagema r k, and these represent the division between two lines or 
two pages, respectively.

A stream data set can be viewed as a character string that can be accessed 
only in special ways. During input, the characters of the stream are read in 
strict sequence, from left to right, and there is no way to return to a 
character that has already been read. During output, the characters of the 
stream are added at the right end of the stream, and there is no way to change a 
character that has already been written. The character string appears to flow 
past the PL/I interpreter and, for this reason, the data set is called a 
’ s t rearn1.
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The stream is a generalization of the various media that are used for 
communication between the user and the computer. It cannot handle diagrams or 
pictures, but it does capture the essence of the printed page or the punched 
card without introducing physical details of format, record boundaries, and so 
on. Furthermore, the process i ng of the stream is a good model for the behavior 
of hardware devices that are used for communication with the user. The 
single-pass, no-back-up property reflects the characteristics of line printers, 
card readers, and remote terminals.

The role of the stream is to make PL/I programs independent of the devices 
used for input and output. For example, a program can call for a sequence of 
one hundred arithmetic values without either telling a card reader to read 
another card or prompting an interactive terminal to supply another number. The 
program can call for input without knowing whether the input will come directly 
from a peripheral device, will be buffered, or will be waiting in permanent 
storage from some earlier input activity. Finally, by means that are discussed 
in this section, the program can deal with transmission errors and the 
end-of-file condition without reference to the specifics of the device that 
caused the condition to occur. Similar advantages apply to the process of 
stream output.

Control Characters in PL/I

PL/I assumes that the PL/I control characters, linemark and pagemark, are 
reserved for use in a stream and cannot be represented in a character-string 
value. In support of this assumption, PL/I provides statement options that are 
used to detect a linemark during input and generate a linemark or a pagemark 
during output. For example, to start a new page in the output stream, a program 
does not transmit a pagemark character; instead, it includes a PAGE option in 
the output statement, and the PAGE option causes a pagemark to be added to the 
output stream. This view of the control characters reflects the opinion that 
the starting of a new line or a new page is a rather special event in the 
composition of a printed document.

In GCOS 
ASCI I ' new 
and most of 
cha racte rs.

PL/I, the stream data set is a sequence of ASCII characters. The 
line’ and ’new page' characters are used for linemark and pagemark, 
the remaining ASCII characters are used for the PL/I data

A difference in principle exists between the design of the PL/I stream data 
set on one hand, and the GCOS PL/1 use of the ASCI I character set on the other. 
PL/I views control characters as inseparably associated with the processes of 
input/output. GCOS PL/I does not normally restrict any characters in this way 
and views input/output as just one of many operations to which a 
character-string is subject. Indeed, the definition of the PL/I 
cha racte r-st r i ng value, given in the section on ’’Values”, allows the use of any 
ASCII character in a character-string value. This difference in principle 
cannot be eliminated, but a practical solution can be achieved by asserting that

It is an error to use a stream input/output statement to 
attempt to transmit an ASCII carriage return, new line, 
backspace, tab, or new page character between the stream 
and PL/I storage.

This restriction leaves latitude for other uses of the restricted control 
characters; specifically, it allows for the inclusion of these control 
characters in the string values transmitted by record input/output statements.
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Input Streams

When a pagemark occurs in the input stream, it is treated as a blank; thus 
an input stream is treated as a single page divided into any number of lines. 
When the stream data set is opened, a stream pointer is associated with it and 
set to the first character. As the file is processed, this stream pointer 
proceeds from one data character to the next, advancing by however many 
characters are read or skipped. When the stream pointer reaches the end of the 
stream, the ENDFILE condition occurs.

For statements in which PL/I controls the editing of the input stream (that 
is, data-directed and list-directed input statements), the linemark has the 
effect of ending an item of input, and acts much as a blank does. This 
interpretation is in accord with the conventions of ordinary printed text, where 
an end-of-line can be used to separate two words.

For statements in which the programmer controls the editing of the input 
stream (that Is, the edit-directed input statement), the linemark is ignored 
unless a specific reference to the line format is made. For example, if an 
input statement calls for three characters when the stream pointer selects the 
last character in a line, the resulting input will be the last character on the 
line and the first two characters on the next line; and no trace of the 
linemark will be input. On the other hand, an input statement can request that 
the stream pointer be moved to a certain column of a line or to the beginning of 
the next line.

There is no way to use stream input statements to program the operation 
’’input the next line from the stream." When data-directed or list-directed 
input is used, the linemark is not distinguished from a blank. When 
edit-directed input is used, the programmer can skip the next line, but can 
perform input only by giving, in advance, the number of characters to be read. 
The operation in question can be performed by means of record input, which 
treats a line as a record.

Output Streams

When an output stream is opened, it is empty unless special arrangements 
are made to the cQntrary. As output is performed, characters are added at the 
right end of the stream. An output stream is usually intended for use to 
produce a printout. A PRINT output stream can contain both linemarks and 
pagemarks, and it thus exercises the full potential of the stream data set. A 
PRINT stream should (within the PL/I framework) be used only for printout; that 
is, the stream should not be used later as a PL/I input stream.

Generally speaking, PL/I allows a programmer to control the format of the 
output and intervenes only when the programmer neglects this activity. 
Specifically, the maximum length of a line and the maximum number of lines on a 
page are established when a stream data set is opened for output. If a program 
attempts to write beyond the end of a line, PL/I automatically. inserts a 
linemark and forces the beginning of a new line. Similarly, if a program 
attempts to write beyond the end of a page, the ENDPAGE condition occurs. The 
programmer can establish an ON unit for ENDPAGE to start a new page and provide 
a suitable heading, or else he can allow PL/I to start a new page as the default 
response to the ENDPAGE condition.
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It is possible to use a stream data set as permanent storage. That is, a 
sequence of values can be written as output to a stream data set, left until 
they are needed, and then read as input from the same data set. However, this 
use of a stream data set is not recommended. It is difficult to imagine a case 
in which a record data set would not be a more efficient, simple, and accurate 
means for permanent storage.

Pseudo-Streams

A character-string storage unit can be used as if it were a stream, and in 
this role, it is called a pseudo-stream. For an input statement, characters are 
taken from the string variable just as if it were an input stream. For an 
output statement, the value of the string variable is first initialized to null 
and then characters are added to its value just as if it were an output stream. 
Under these circumstances, no actual input or output occurs, but the large and 
complicated editing facility of the stream input/output statements can be 
applied to the editing of character strings.

A pseudo-stream cannot contain either a linemark or a pagemark, and thus is 
viewed as a single line of data characters. This restriction is consistent with 
the PL/I requirements that control characters can only be used in (true) stream 
data sets.

STREAM INPUT/OUTPUT FILES

A connection must be established between a statement that performs 
input/output and the GCOS file on which the operation is to be performed. A 
detailed analysis of this connection follows:

• The connection begins with an input/output statement.

• Every input/output statement contains a file opt i on.

• A file option has as its argument a file reference.

• The evaluation of a file reference yields a file .value.

• A file value is a pointer-like object that designates a 
f i1e-state block.

• A file-state block is a structure-1ike set of values that includes a 
GCOS file code.

• A file code does, indeed, designate a file and is thus the last part 
of the connection.

The PL/I data sets have already been discussed in this section, and the 
input/output statements will be discussed later. For the present, the subject 
is the file-state block and the file reference that designate it.
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F_l.l e-S ta te B locks

block

it is used and maintained by

data. This 
file-state block contains 
input/output in progress.

stored
the
After the file is closed 

meaningful is that suppli
name. A1 though ain the declaration of the 

resembles a structure, it 
i ns tead,

e requires bookkeeping 
When a file is open, the 
ther information about 
only information in the

Transmission of values between PL/I and a GCOS f 
i n a f i1e-s ta te block. 
GCOS file code and

The following values in the file-state block are relevant to stream 
input/output:

indi cator, which shows whether the file is ’open* or 
that is, whether or not a data set is currently attached to 

tne tile

The GCOS ..fj....l.,e code, which is used to establish the actual connection 
between the file-state block and a file

The f i... 1 e name, which is the file constant name (an identifier) 
expressed as a character-string value

The file _a 11 r i bu t e s associated with the current use of the file-state 
block. These are discussed later; one of them shows whether the file 
is an input file or an output file

The status 
1c1osed1;

For an input file, the s trearn pointer, which points to 
which will be read next

the character

For an output fi le, the 1i ne s i ze 
for the number of characters 
page, respect i ve1y

and page size, which give 
per line and the number of

max i mums 
lines per

For an output file, the co 1umn pos i t i on, 
number, which have values j_, j_, and k. if 
will be the (J_+l)th character in the j_th

the 1i ne number, and the page 
the next character output

line on the J<th page

It is customary to use the word "file” as an abbreviation for the term 
’’file-state block”, and some other liberties are taken to attain brevity. For 
example, one might say ’’advance the stream pointer associated with the file 
TEST2 through the input stream,” instead of saying "advance the stream pointer 
contained in the file-state block associated with the file value designated by 
the file constant TEST2 through the stream data set associated with the same 
file-state block.” No confusion arises if one remembers that a remark about the 
actual data refers to a data set, while a remark about the control of the 
transmission process refers to a PL/I file-state block.

1U-5 DE05



File References

A file-state block is designated by a f Lie ^value.; and the file value is 
supplied to an input/output statement by a file constant, a file variable, or a 
file-valued function. For example, the input statement

GET FILECTEST2) LIST(A,B,C);

uses the file constant TEST2 to refer to a file-state block, which, in turn, 
refers to a file.

A file constant should be declared with the following attributes:

EXTERNAL

INTERNAL
FILE [constant]

When the scope attribute is EXTERNAL, it can be omitted. The CONSTANT attribute 
can always be omitted; however, some programmers prefer to write FILE CONSTANT 
in a declaration in order to avoid confusion with a file variable.

Every file constant name must have an associated file description. This 
file description may be given when the file is opened, as described later in 
this section, under ’’The OPEN Statement”. However, PL/1 also allows the 
programmer to write any portion of the file description attributes in the 
declaration of the file constant name.

For each declaration of a file constant, a file-state block exists in 
static storage. The only exception is the declaration of a given identifier as 
EXTERNAL FILE CONSTANT in several places; in this case, the declarations refer 
to the same file-state block, as required by the proper interpretation of the 
EXTERNAL attribute. A given file constant and its associated file-state block 
can be used for more than one data set in the course of a PL/I program 
execution. For example, a file-state block can be opened for input from a 
stream data set, closed, opened for output to a record data set, and closed 
aga i n.

A file variable 
variable or function.

or file funct ion is declared similarly to an arithmetic 
The only differences are:

The data type is FILE.

The default scope EXTERNAL applies to a file variable, 
default scope for most other data types is INTERNAL.

whereas the

The attribute VARIABLE must be used explicitly for 
because PL/I will otherwise assume the identifier

a file variable
is a FILE CONSTANT.

STREAM INPUT/OUTPUT OPERATIONS

The summary of stream input/output operations that follows includes 
terminology, shows how stream data sets are manipulated, and gives a general 
view of the stream input/output facility. It also serves as an introduction for 
the subsequent pages of this section.
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When a file is opened for i nput the designated file is attached and 
preparations are made for reading from the first character onward. When a file 
is opened for output/ the previous contents of the designated file are discarded 
and the file is prepared for the appropriate output format. A stream file can 
be opened for input or for output, but not for a combination of input and 
output.

Input operations proceed through the file read i ng or ski ppi ng characters in 
strict sequent i al order. Output operations wr i te characters, always adding them 
at the right end of the stream. Thus the actual transmission of data is simple. 
The complexity of stream input/output arises from the variety of ways in which 
the GET statement edits the characters that are read from the input stream and 
the equally numerous ways in which the PUT statement edits the characters that 
are added to the output stream.

Within stream input/output, there are three separate disciplines of 
input/output. The first two disciplines, d a t a-d i r e c t e d and 1i s t-d Erected, are 
closely related and are both quite automatic; that is, PL/I makes most of the 
decisions about the representation of values and the layout of a page. The 
third discipline, ed i t-di rected, allows the programmer to specify the details of 
representation and layout. Within this last discipline there is yet a further 
choice of methods. The programmer can choose between format items, which are 
derived from FORTRAN, or pictures, which are derived from COBOL. Clearly, the 
choice of an input/output discipline can be difficult, and advice on the choice 
will be g i ven.

Many cond i t i ons can occur as the direct or indirect result of stream 
input/output. Certain conditions always imply that an error has occurred; other 
conditions are used to control the logic of the input/output process and do not 
necessarily indicate an error. Some conditions are uniquely associated with 
input/output; other conditions arise from common operations, such as the 
assignment of a value to a variable, that happen to be used during input/output.

This concludes the summary 
remainder of this section is devoted 
operat i ons.

of stream input/output operations. The 
to the detailed consideration of these

OPENING AND CLOSING FILES

When a file is opened, the file-state block is marked ’’open” and the data 
set designator and control parameters and indexes are set in the block. When a 
file is closed, the file is marked "closed" and only information provided by the 
file declaration is meaningful.

A file is opened when the first input/output statement referencing the file 
is executed. The purpose of the OPEN statement is to provide the title and file 
description for the file opening. However, both these options can be omitted 
from the OPEN statement, and, in that case, a default assumption is made. If an 
OPEN statement is not given for a file, the attributes for the file opening are 
derived from the first input/output statement executed. If a file is already 
open when an OPEN statement is executed, the OPEN statement is completely 
i gno red.
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The OPEN Statement

When an OPEN statement is used to open a stream for input, 
value, a title for the stream data set, and a file description, 
statement:

it gives afile
Consider the

OPEN FILECTEST2) TI TLE("Zl" ) INPUT;

In this statement, the file value is given by the constant TEST2, the title is 
Zl, and the file description is INPUT. This statement is interpreted as 
fol 1ows:

title is used to determine the file code.The

The associated data set is checked to make sure that i t i s a stream
data set.

The column pos i t i on associated with the file is set to 1, and the
stream pointer i s set to point to the first cha racte r of the stream
data set.

The file is marked "open".

If any of these steps cannot be performed, the UNDEFINEDFILE(TEST2) condition 
occurs. If the file designated by TEST2 is already open when the statement is 
executed, then the OPEN statement is ignored.

When an OPEN statement is used to open a stream for print output, the 
maximums for the length of a line and a page can also be given. Consider the 
statement:

OPEN FILE(REPORT) T I TLE (’’ALPHA” ) PRINT 0U1PUT 
LINESIZEC80) PAGES I ZE(60);

The statement is interpreted as follows:

The property page size associated with the file is set 
given by the PAGES I ZE option, namely 60.

The property 1i ne s i ze is set to the value 
option, namely 80.

The title is used to determine the file code
statement.

given by

as in the

The data set is deleted and a new data set 
description STREAM PRINT OUTPUT is created.

conformi ng

to the value 

the LINESIZE 

previous OPEN 

to the file

The indexes 1i ne number, and page number are set to 1 and the index 
column pos i t i on is set to 0.

The file is marked "open”.
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As in the previous example, the UNDEFINEDFILE(REPORT) condition occurs if any of 
these steps cannot be performed, and the OPEN statement is ignored if REPORT is 
a 1 ready open.

If the title option is omitted from an OPEN statement/ the file name is 
used in forming a title. The statement

OPEN FILE(REPORT) PRINT;

is equ i va1en t to

OPEN FILE(REPORT) TITLE("RE PORT" ) STREAM PRINT OUTPUT ENV IRONMENT(CONSECUTIVE) 
LINESI ZE(132) PAGES IZE(55);

This example also shows that the default maximum for the length of a line is 132 
characters/ the default maximum for the number of lines on a page is 55, and 
PRINT implies an output stream.

There are not many file descriptions for 
important ones were used in the example of the OPEN

stream input/output. 
statement/ above; they

The 
are

INPUT

PRINT [output]
ENVIRONMENT

CONSECUTIVE

INTERACTIVE

The PRINT attribute should not be used in opening an output stream that, at a 
later time, will be used as an input stream. When an output stream is directed 
at an interactive terminal/ the ENV IRONMENT(INTERACTIVE) attribute may be used.

The CLOSE Statement

The 
example:

CLOSE statement has a simple form. as indicated by the following

CLOSE FlLE(TEST2);

This statement marks the file-state block TEST2 closed. If the program is 
interrupted before a file has been closed, its contents are undef i ned. 
Therefore, every OPEN statement should be matched by a CLOSE statement; and, 
further, the CLOSE statement should be executed as soon as possible after the 
completion of input/output operations on the file.
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Def aul t F i les

It is possible to write a PL/I program without declaring a single file 
constant or using a single OPEN statement. In that case, input is taken from 
the system input file, and output goes to the system output file. Consider 
first the case of a stream i nput stat ernent that does not have a file option; for 
example,

GET LIST(A,B,C);

The default mechanism of PL/I comes into play with full force here. Before 
execution of the program begins, PL/I inserts an OPEN statement and adds a file 
option to the GET statement, giving

OPEN FILE(SYSIN) TITLE(”I*”) INPUT; 
GET FILE(SYSIN) LIST(A,B,C);

If the statement does not lie within the scope of a declaration of SYSIN, PL/I 
supplies the foilowing declaration in the largest enclosing block:

DCL SYSIN EXTERNAL FILE CONSTANT;

The omission of an OPEN statement is common. On the 
SYSPRINT should always be declared because GCOS PL/I 
should be explicitly declared.

other hand, SYSIN and 
requires that every name

The default interpretation just described is applied to every GET statement 
in a program that does not have a FILE option. Because SYSIN is declared 
EXTERNAL all such statements refer to the same file-state block, even when the 
interpretation of several GET statements leads to several declarations of.SYSIN. 
Because an OPEN statement only performs an action when the designated file is 
not already open, the file SYSIN is only opened once.

Consider next a stream output statement that does not have a file option; 
for example,

PUT LIST(X,Y,Z);

This statement is treated like the input statement, except that SYSPRINT is used 
as the default file constant. The statement is expanded to be:

OPEN FlLE(SYSPRINT) TITLE("P*") PRINT;
PUT FlLE(SYSPRINT) LIST(X,Y,Z);

14-10 DE05



INPUT/OUTPUT STATEMENTS

There is one statement for stream inputz the GET statement, and one 
statement for stream output, the PUT statement. Each statement is a keyword 
followed by a sequence of options. Most of the options are simple. They 
specify the file on which the statement will operate, the number of lines to be 
skipped before reading or writing begins, and so on; and these simple options 
are described here. The final option in a GET or PUT statement is the 
transmission option and it is not simple. It specifies the transmission of data 
according to the rules of data-directed, list-directed, or edit-directed 
input/output. The transmission option is described later in this section.

In addition to the GET and PUT statements, there is a third stream 
input/output statement, the FORMAT statement. This statement plays a 
specialized role, and is used only in connection with an edit-directed 
transmission option.

The GET Statement

Stream input is performed by the GET statement. A full example of such a 
statement follows:

GET FlLECTEST2) COPY(ECHO9) SKIP(N+2) LIST(A,B,C);

There are four options in this example. The options are interpreted as follows:

FILE(TEST2) is the file option. It designates a file-state block and, 
through the file-state block, the stream data set from which input is 
to be taken. If the option is omitted, FlLE(SYSIN) is assumed.

COPY(ECHO9) is the copy opt i on. When this option appears, every 
character skipped or read from the input stream is written in the 
output stream designated by this option. If a COPY is given without 
an argument, COPY(SYS PR I NT) is assumed.

SKIPCN + 2) is the skip opt ion. It specifies that 
performed, characters will be skipped until 
(N+2)th line after the current line. If SKIP is 
SKIP(1) is assumed.

before any input is 
the beginning of the 

used wi thout a count,

LIST(A,B,C) is the transmi ss i on opt ion. In 
list-directed and specifies that the next three 
will be read in and assigned to the three targets 
namely: A,B, and C. If the option is omitted, no

this case it is 
values in the stream 
g i ven in the list, 
values are input.

The example just given shows the important input options, 
points round out the description of the GET statement:

The fol lowing

The skip and transmission options cannot both be omitted, since the 
statement would then do nothing; but options can be omitted in any 
other way. In fact, the use of all options, as in this example, is 
rare.
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The options can be arranged in any order, but the 
example is recommended because it is the order 
are performed. The source and copy files 
transmission, then the skip is performed, and 
from the stream occur.

order used in this 
in which the actions 
are prepared for 
only then does i nput

It is possible to simulate input by using the option STRINGCe.) instead 
of the file option, where e. i s a character-string expression. The 
value of e. is treated just as if it were the current input stream. 
More is said of this later, under ’’The String Option”.

The PUT Statement

Stream output is performed by the PUT statement, 
statement follows:

A full example of such a

PUT FILE(REPORT) PAGE LINE(5) LIST(X,Y,Z);

There are four options in this example. The options are interpreted as follows:

• FILE(REPORT) is the file opt i on. It designates the stream data set to 
which the output will be transmitted. If the option is omitted, 
FlLE(SYSPRINT) is assumed.

PAGE specifies that a pagemark will be written in the output stream.

LINE(5) specifies that sufficient linemarks will be written so that 
subsequent output will begin the fifth line of a page. If a new page 
must be started, the subsequent output begins on the first line of the 
new page.

LIST(X,Y,Z) is the transmi ss i on opt i on. In this case it is 
list-directed and specifies the values that are to be written out. If 
the option is omitted, no values are output.

The example
PUT statement:

given does not illustrate the following features of the

A SKIP(n) option can be used in a PUT statement. It specifies that 
subsequent output should begin the nth line after the current line. 
If SKIP is used without an argument, SKIP(l) is assumed. If the skip 
option is used, neither the page nor line option can be used.

The skip, page, line, and transmission options cannot all be omitted, 
since the statement would do nothing; but options can be omitted in 
any other way.

The options can be arranged in any order, but the order used in the 
example is recommended because it is the order in which actions are 
performed: The des t i na t i on file is located, then the page and 1 i ne 
options are performed (in that order), and only then does output to 
the stream occur. If a skip option is used, it should be written just 
after the file option so that it takes the place of any page or line 
opt i on.

It is possible to simulate output by using STRINGCt.) where X is a 
suitable target for assignment of a character-string value. The 
string of characters that would otherwise be placed in the output 
stream is assigned to X.
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The FORMAT Statement

The FORMAT statement is the keyword FORMAT followed by a parenthesized 
format list. The statement must begin with at least one label prefix. Consider 
the statement

F5: FORMAT(A(10),P"BBB--9V.99");

This statement has the label prefix 1F5: ’ and the format list is made up of the 
items A(10) and P"BBB--9V.99".

The purpose of a format statement is to supply a format list for an 
edit-directed GET or PUT statement that appears elsewhere in the program. 
Specifically, such a GET or PUT statement may contain a remote format item, such 
as

R(F5)

The remote format item is interpreted by interpreting the items in the format 
list associated with F5; namely,

A(10), P"BBB--9V.99"

Thus the FORMAT statement is used in order to supply a format list for some 
other stream input/output statement. The interpretation of the format list 
itself will be given later, in the discussion of edit-directed input/output.

A FORMAT statement is similar in some respects to a procedure. The 
identifier F5 is a format constant name, not a label constant name. It is used 
to invoke the FORMAT statement only in a remote format item, and it cannot be 
used as the destination of a transfer of control. When control reaches a format 
statement as a result of the sequential execution of the preceding statements, 
the format statement is skipped, just as a procedure is skipped under the same 
ci rcumstances.

The value of a format constant is similar in many respects to an entry 
value. The format value can be assigned to a format variable, can be the result 
of a reference to a format variable or a function, and can be compared to 
another format value by means of the operators ’ = ' and ,A=». A variable or 
function that has a format value is declared similarly to an arithmetic variable 
or function; its data type is FORMAT, and the attribute VARIABLE is always 
assumed to app1y.

As an example of the use of a format variable, and as a further example of 
the format statement, consider the following program fragment:

• • • 
DCL X FORMAT;

Q: F0RMAT(A(10),F(11,2));
• • • 
X = Q;
• • • 
GET EDITCY, Z)(R(X));
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The remote format item has the format variable X as its argument. Since the 
value of X is the format constant Q, the remote format item is equivalent to 
R(Q). Furthermore, since the format constant Q, is associated with the format 
list (A(10), F(ll,2)), the GET statement is equivalent to

GET EDIT (Y, Z)(A(10), F(ll,2));

The interpretation for this kind of input statement is given later; the purpose 
here has been to show how format constants, variables, and statements can be 
used to supply a format list to such a statement.

DATA-DIRECTED INPUT/OUTPUT

When data-directed input is used, the input stream contains a variable for 
each input value; so the target for an input value is provided by the data 
rather than by the program. Furthermore, once a data-directed statement has 
initiated input, the process continues until a semicolon is encountered in the 
input stream; so input is terminated by the data rather than the program. For 
these reasons, the term "data-directed" is applied to this input/output 
facility.

An Example of Data-Direc ted Input/Output

As an example of data-directed input/output, consider the following program 
to calculate the range of an artillery piece fired on level ground:

RANGE: PROC;
DCL (SYSIN,SYSPRINT) FlLE;
DCL SIND BUILTIN;
DCL (VO, THETA, RANGE) FL0AT(15);
DCL G FL0AT(15) I N I T( 32.174 ) ;
DO WHILE("1"B);

GET DATA(V0, THETA);
IF V0=0 THEN RETURN;
RANGE = ((VO**2)*SIND(2*TH ETA))/G;
PUT SKIP DATA(V0, THETA, RANGE);
PUT SKIP;
END;

END;

This program appears to be an infinite loop (since the condition WHILE("1"B) is 
always satisfied). Each time around the loop, the program reads the muzzle 
velocity (VO) and the angle of elevation (THETA), performs an end test, 
calculates the distance to impact (RANGE), and outputs results. The program is 
designed to stop on a misfire; that is, it returns when V0=0.

The input statement in this program is the data-directed GET statement

GET DATA(VO,THETA);

Each time this statement is executed, the input stream is read through the next 
semicolon in the stream. Suppose the program is being used to calculate four 
trajectories. Then the input stream might be:

V0=1000 THETA=35;
V0=1000 THETA=40;
V0=1000 THETA=45;
V0=1280 THETA=45;
V0=0 THETA=45;
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In this example, each line ends with a semicolon and therefore represents the 
two values required for an execution of the GET statement and the calculation of 
a trajectory. The zero value of VO stops the program, but the last value of 
THETA is added for completeness and has no effect whatever.

A value not mentioned in the input stream is not changed; furthermore, the 
order in which values are mentioned has no significance. Therefore, the same 
trajectories can be specified as follows:

THETA=35
THETA=^0;
THETA=45;
V0=1280;
V0 = 0;

V0=1000;

The stream assignments can be separated from one another by any sequence of 
blanks, tab characters, and new lines; and thus the input data can be 
attractively formatted (as above) and can be broken into several lines when it 
does not fit on one line.

It is the semi co 1 on and not any other character that delimits the input 
stream read by a given GET statement. Thus the example can be written in yet 
another way, this time as a compact single line:

THETA=35 VO=1000;THETA=40;THETA=45;VO=1280;V0=0;

This format is less attractive but, as a practical matter, it might well be used 
when the input is being typed in at an interactive terminal.

Why are the variables VO and THETA mentioned in the GET statement? Since 
the input stream specifies a variable for each input value, a mention of 
variables in the GET statement appears to be redundant -- and it is. The effect 
of the mention of variables in the GET DATA statement is to r e s t r i c t the input 
stream to those variables only. Thus, for example, if the input stream given 
above included G=1000, PL/I would reject the input and cause the NAME condition 
to occur because the GET DATA statement does not mention G. This restriction 
allows the programmer to maintain control over the effects of .data-directed 
input and also allows PL/I to execute data-directed input more efficiently.

The output statement in the RANGE program is the data-directed PUT 
statement

PUT SKIP DATA(V0, THETA, RANGE);

If the input stream is the one discussed above, the program executes this PUT 
statement four times and produces the following addition to the output stream:

V0= 1.0000E+003 THETA= 3.5000E+001 RANGE= 2.9207E+004;
V0= 1.0000E+003 THETA= U.0000E+001 RANGE= 3.0609E+004;
V0= 1.0000E+003 THETA= 4.5000E+001 RANGE= 3.1081E+004;
V0= 1.2800E+003 THETA= 4.5000E+001 RANGE= 5.0923E+004;
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The preceding output is directed to the SYSPRINT file, which is declared PRINT. 
For a file with the PRINT attribute, PL/I assumes the tab stops of the printer 
are set at 11, 21, 31, and so on. Each stream assignment (except the first) is 
preceded by a tab character, and each stream assignment is followed by a blank. 
In the example above, the three stream assignments are 15, 18, and 18 characters 
in length so they begin in columns 1, 21, and 41.

When a value is output, it is first converted to a character string and 
then output in that form; this conversion is discussed in the section on "Value 
Conversion". In the RANGE program, all of the values have the same data type, 
namely FLOAT(15). The conversion of such a value to a character string proceeds 
as follows: the value is converted from BINARY to DECIMAL with an equivalent 
precision; in this case, the target data type is DEC FL0AT(5). Then the decimal 
value is converted to a character string in a straightforward way to give a 
string of 12 characters.

A Second Example of Data-Directed Input/Output

The following program illustrates the remarkable flexibility of 
data-directed input:

UPD: PROC;
DCL (SYSIN,SYSPRINT) FILE;
DCL K CHAR(IO);
DCL 01 M,

02 NAME CHAR(30) VAR,
02 ADDRESS,

03 STREET CHARC30) VAR,
03 CSZ,

04 CITY CHARC20) VAR,
04 STATE CHAR(2),
04 ZlP PIC"99999",

02 EXPIRY,
03 MONTH PIC"99",
03 YEAR PIC"99",

02 ACCOUNT PIC"$$$9.99";
DCL MEMBERS FILE;
OPEN FlLE(MEMBERS) KEYED UPDATE;
DO WHILE("1"B);

GET DATA(K);
IF K="" THEN DO;

CLOSE FILE(MEMBERS);
RETURN;
END;

READ FlLE(MEMBERS) KEY(K) INTO(M);
PUT DATA(M);
GET DATA(M);
REWRITE FlLE(MEMBERS) KEY(K) FROM(M);
END;

END;

This program uses record input/output and therefore anticipates the reader’s 
progress through the manual; however, the program is easily explained.
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Ine program assumes t 
membership of an organization

that can be stored in the structure M in the program, 
program * ' ~
user, s 
val ue 
value, 
value on the record. writes the modified

a record

The main part of the
15 ? tacn time through the loop, the program gets a key from the

tops if the key is an empty character string, uses the key to read the 
of a record from the file into the structure M 
gets modifications of the value from the user, and

The interesting part of the program is the statement ’GET DATA(M);'. This 
statement allows the user to enter modifications to any components of M. For 
example, the input stream might be as follows:

K= ”CRIEM06301”;
M0NTH= 3 YEAR = 74;
K= "MAREM06733";
ZlP= 02139;

Two records are changed. For the member whose key 
membership expiration is changed to March, 1974. For 
MAREM06733, the zip code is changed to read 02139.

is CRIEM06301, the date of 
the member whose key is

Principles and Exceptions

The underlying principle of data-directed i nput is as follows: when a 
stream assignment is read by a GET DATA assignment, it is treated as if it were 
an assignment statement that appeared exactly where the GET DATA statement 
appears. For practical reasons, the following exceptions apply:

• The assignment must not require computation. If the target variable 
has subscripts, they must be signed or unsigned integers. The value 
on the right must be a value that could appear in a storage unit just 
as it is; for example, 4+5 is not allowed, but 4+51 is.

• The variable name must designate a scalar storage unit. The variable 
name must appear explicitly in the DATA list or else it must designate 
a. component of an aggregate variable whose name appears in the DATA

Stream assignments are not separated 
semicolon is used to terminate input), 
tab characters, linemarks, and commas

by semicolons (except where 
Instead, a sequence of blanks, 

can be used. Blanks, tabs, and 
linemarks can also be used adjacent to the ’=’ sign.
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anon

data-d i rected

store va1ues 
i nput/output. 
design of d

in a stream, but rar inrerior. to 
However, this principle does provide 
a-directed output. For example, a

were used

a PUTThe underlying principle of da t a-dr ec t ed^JipjuXj s as follows,. 
DATA is 
stream, 
i dent i ca1

the facilities of record 
an understanding of the

PUT DATA statement adds,a 
m wouId be delimited if it 
to this principle of

executed for a given list or variables ana products a uciuai 
then the execution of a GET DATA with the same list of.variables 

stream will assign to the variables their original.values. 
hat would actualIv oerform this operation; it j_s a way

reversibility are:

If the output file has the PRINT attribute, the. quote marks are 
removed from the value of a character string. This allows character 
values to be used for identification of output but, at the same time, 
interferes with their being read back as input character strings.

For all output files, a BINARY arithmetic value is converted to base 
DECIMAL. This may result in the loss of some precision, so that when 
the value is converted back during input it will not be quite the same 
BINARY arithmetic value.

Guidelines for Data~D i rected I nput/Out.EUt.

Data-directed input/output is best suited for temporary applications; 
either in a program written quickly and used only a few times, or as temporary 
diagnostic output in a program being tested. The latter application of 
data-directed input/output is a useful debugging aid. . Appropriate PUT 
statements can be inserted to produce dumps of specific data without regard 
the format of the output. If each such statement is marked with a comment 
indicating its role, such as /*DUMP*/, the statements can be systematically 
removed when debugging is complete.

Data-directed input/output is the most device-independent form of 
input/output. PL/I arranges stream assignments in a way that is readable and 
that is usually neatly aligned in columns. Since each value is,paired with,an 
identifying variable, no reasonable arrangement of the data can interfere with 
the proper identification of the values.

Data-directed input/output is well protected against user errors. ''the 
user places a variable in the input stream that does not appear in the DA^A 
option, the NAME condition occurs; and an array subscript that is out of bounds 
is similarly treated. There is a fairly good,chance that a value will either 
arrive at its intended variable or will be rejected as invalid.

These advantages are balanced by disadvantages. Data-directed input/output 
is the least efficient of the modes of input/output since the assignment of 
input data must be determined entirely at execution time. The preparation of 
input data requires more keystrokes, since each value must be preceded by its 
variable name. Output data can become cluttered by the repeated occurrences of 
just a few variables. For all of these reasons, data-directed input/output 
should be used only for small-scale, simple transmission of data.

14-18 DE05



LIST-DIRECTEP INPUT/QUTPUT

When list-directed input is used, the variable that is the target of an 
input value is given in a JJLs£ that is part of the GET statement; so this list 
determines where the input values go. For this reason, the term "list-directed” 
is applied to this input/output facility.

An .Example _o f L i s t-_& L re cted Input /Output

The program to calculate the range of an artillery piece is used here as an 
example, of list-directed input/output. That program was given under 
”Data-Directed Input/Output", and only the two input/output statements need be 
changed, as follows:

RANGE2: ...
• • •
GET LIST(V0, THETA);
• • •
PUT SKIP LISTCVO, THETA, RANGE);
• • •
END;

List-directed input/output is quite similar to data-direc ted input/output, and 
the program above is testimony to this fact. RANGE2 differs from RANGE only in 
the use of the keyword LIST instead of DATA in the input/output statements. 
Suppose this program is being used to calculate four traj ectories, just as RANGE 
was. Then the input stream would be:

1000 35
1000 40 
1000 45 
1280 45 
0 45

This input is the bare minimum and looks more like computer input prepared in 
bulk, on punched cards, for example. The input is nicely formatted, but PL/I is 
not influenced by that. If, by mistake, the stream pointer is just after the 
1000 on the first line, the whole run of the program will be invalid; indeed, it 
will not stop until a zero is encountered somewhere beyond the portion of the 
stream shown above or until some input/output condition stops it.

It is possible to ignore a target in the GET statement by leaving a value 
blank. In order to do so, however, commas must be used to separate the values, 
as foilows:

1000, 35,
z 40,
, 45,

1280,
0,
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Again, the format is for the benefit of the user, not 
entered as

PL/ I . The stream could be

1000,35,,40,,45,1280,,0,,

with exactly the same effect. The use of a comma as a separator is optional in 
list-directed input, but it is suggested that commas be used throughout when one 
or more targets are ignored.

If the input stream is the one just 
following addition to the output stream:

discussed, the program produces the

1.0000E+003
1.0000E+003
1.0000E+003
1.2800E+003

3.5000E+001 
4.0000E+001 
4.5000E+001 
4.5000E+001

2.9207E+004
3.0609E+004
3.1081E+004
5.0923E+004

This output will be labelled if the following statement is inserted before the 
1 oop:

PUT SKIP LI ST(”0VELOCITYbbb”, "bELEVAT I ONbb", "bRANGEbbbbbb");

Note that each heading is padded with blanks so it is just as wide as the value 
it labels; this assures that it will line up whatever tab stops are used. The 
blank at the beginning of each heading corresponds to the sign position of the 
numbers. The statement prints the line: 

VELOCITY ELEVATION RANGE

at the beginning of the output.

Compound List I terns

In its simplest case, a GET LIST statement has a list of designators of 
scalar values, and these are paired, one-for-one, with the values in the input 
stream. The GET LIST statement in the RANGE2 program was of this sort: its list 
was composed of two scalar names, V0 and THETA. However, list-directed input is 
not restricted to this simple case; instead, an item can be any variable name, 
scalar or aggregate, or it can be a pa renthes ized i terated list of items. Such 
items are interpreted by expanding them from a single item into a sequence of 
items; and they are therefore called compound i terns.

An item that is an array variable name represents the elements of the array 
listed in row-major order. Suppose the following declaration is in effect:

DCL A(3:4,3) FLOAT;

Then the statement

GET LIST(A);

is interpreted as

GET LIST(A(3,1), A(3,2), A(3,3), A(4,l), A(4,2), A(4,3));

and therefore reads six values from the input stream.
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An item.that is a structure variable name represents the members of the 
structure listed in the order in which they are declared. If a member of the 
structure is not a scalar, then the member is expanded, in turn, into a list of 
its components. Suppose the following declaration is in effect:

DCL 01 SPECS,
02 SIDE(2),

03 H FLOAT,
03 W FLOAT,

02 AREA FLOAT;

Then the statement

GET LIST(SPECS);

is interpreted as

GET LI ST(SPECS.SI DE(1).H, SPECS.SI DE(1).W,
SPECS.SIDE(2).H, SPECS.SI DE(2).W, SPECS.AREA);

and therefore reads five values from the input stream. The item in this example 
is a level one" structure; but any component of an aggregate can be referred 
to. For example, GET LI ST(SPECS.SI DE) is interpreted as above but with 
SPECS.AREA omitted.

An item that is a parenthes i zed i terated list represents a list of 
subscripted items. For example, the statement

GET LIST((X(I), Y(l) DO I = 2 to 4));

is interpreted as

GET LIST(X(2), Y(2), X(3), Y(3), X(4), Y(4));

and therefore reads six values from the input stream. The form of the i terated 
1 LSt is based on.the DO statement, and can use any of the multiple do clauses 
defined in the section on "Program Flow". The following example illustrates the 
opt ions all owed:

GET LI ST((BUSY(K) DO K = 1, 5, 6 REPEAT 2*K WHILE(K<25), 
23 TO 15 BY -2));

This statement uses the following sequence of subscripts:

1, 5, 6, 12, 24, 23, 21, 19, 17, 15

Therefore it reads ten values from the input stream into the array BUSY.

All of the compound items have now been informally described; but without 
further examples, certain useful techniques might be overlooked by the reader. 
For example, an item in a parenthesized iterated list can itself be a compound 
item. The statement

GET LIST((Q(I,*) DO I = 1 TO 3));

reads in values for the first three rows of the array Q. In this example, 
Q(l,*) is a compound item representing the values in a row of the array Q.
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An item in a parenthesized iterated list can be another parenthesized 
iterated list, as shown in the following statement:

GET LISTCX, C(A(J,K) DO K = 1 TO 2), B( J) DO J = 3 TO 4), Y);

Th i s statement is interpreted as

GET LISTCX, A(3,l), A(3,2), B(3), ACL ,1), A(4,2), B(4), Y);

and the refo re reads eight values from the input stream.

Any appropriate expressions can be used in the clauses of the multiple do. 
For example, the statement

GET LISTCX, (Y(M) DO M = Ml TO RAD*U(J-1)));

can be used, but of course its interpretation cannot be determined until, as the 
result of the execution of earlier statements, values have been assigned to Ml, 
RAD, J, and U(J-l). Even values previously input by the same GET statement can 
be used to control the statement; for example, the statement

GET LISTCN, (W(I) DO I = 1 TO N) );

reads a value into N from the input stream and then uses that value to determine 
how many values are read into the array W.

The list of a PUT LIST statement can use the compound items that have been 
described for the GET LIST statement. Each compound item in a PUT LIST 
statement is interpreted as a sequence of items in exactly the way it would be 
interpreted in a GET LIST statement.

Each output value in a PUT LIST statement can be given by an.expression of 
unlimited complexity. Just as a GET LIST allows the use of anything that could 
appear on the 1 eft side of an assignment statement, so a PUT statement allows 
use of anything that could appear on the right side of an assignment statement.

Pseudo-Variable List I terns

Since an item in a GET LIST statement can be any target, it can be a 
pseudo-variab1e. For example, the statement

GET LI ST(REAL(X), IMAG(X));

reads two values from the input stream and assigns them as the real and 
imaginary parts of X, respectively. The values must be REAL and the variable X 
must be COMPLEX.
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Principles and Exceptions

The principle of 1ist-directed Input is as follows: the variable names in 
the Jist in the GET statement are processed from left to right; and, for each 
variable, an assignment statement is executed that consists of the variable 
name, an = ’ sign, and the next item from the input stream. In practice, 
list-directed input is both more powerful and less powerful than an ordinary 
assignment statement, as indicated by the following exceptions:

When a variable designates an aggregate, a sufficient number of 
(scalar) values are taken from the input stream to provide a complete 
value for the variable, as described under ’’Compound Items”, above. 
There is no corresponding feature of an ordinary assignment statement 
because therejs no way to write an aggregate constant. For example, 
one cannot write ’A = 89,-99,17;’ to assign an array value to A.

I terns read from the data stream must be values as they stand, 
further computation.

wi thout

The reference that appears in a GET LIST list must have an arithmetic 
or string data type since only values of these types can appear in the 
input stream.

The principle of 1ist-directed output is the same as that for data-directed 
output; whatever is output by a given statement can be input by a statement with 
the same list. As with data-directed input/output, the exceptions to this 
principle occur when.character strings are output under the PRINT attribute and 
when a BINARY value is converted to DECIMAL for output.

Guidelines for List-Directed Input/Output

List-directed input/output is more efficient than either data-directed or 
edit-directed input/output because it does not require the execution-time 
interpretation of variable names (as does data-directed input/output) or 
execution-time editing (as does edit-directed input/output). On grounds of 
efficiency alone, then, it is preferred; but its limited and rigid format is a 
disadvantage, especially for output.

For list-directed output/ the programmer cannot choose a format freely; he 
must take into, account the tab stops provided on the printer, for example. 
Further, automatic conversion of arithmetic values to character strings uses 
moderately complicated rules and can produce some surprises. Thus, it is often 
easier to use edit-directed output from the outset and be assured of full 
control over the output format.

The use of list-directed Lnput is more attractive, since the insensitivity 
to format is an advantage. If a large volume of input is required, it can be 
typed or punched value after value, line after line, using exactly the precision 
and scaling that appear in the raw data.
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EDIT-DIRECTED INPUT/QUTPUT

When edit-directed input/output 
instructions for the editing of the 
statement includes a list of data items, 
but also has a list of format items that 
either checking the format of input 
this reason, the term '’edit-directed” is

is used, the statement includes 
transmitted values. The edit-directed 

just as a list-directed statement does, 
control the editing of each value, 
r supplying the format for output. For 
applied to this input/output facility.

Examples of Edit~Pirected Input/Qutput

Edit-directed input/output will be introduced through discussion of several 
versions of a single program. The program inputs a number, divides it by two, 
and outputs both the given number and the computed result. It is known that the 
input is supplied as a signed, three-digit number. The first version of the 
program is:

Pl: PROC;
DCL (SYS IN,SYS PR I NT) FILE;
DCL (X,Y) FLOAT;
GET ED IT(X)(A(4 ));
Y = X/2;
PUT ED IT(X,Y)(SKIP,A,X(3),A); 
END;

This program uses the most fundamental of all format items, the A (for 
’’alphanumeric") format item. This format item specifies the reading of 
characters from the input stream without any checking or conversion whatever.

The GET statement is interpreted as "read the next four characters from the 
input stream and assign them (as a character-string value) to X". It performs a 
very simple input operation. A conversion of data type does occur, but it is 
part of the assignment of the character string input to X, and it is not 
controlled by the GET statement. Suppose the input stream currently begins with 
’-709’; then ’-709’ is expressed as a REAL BINARY FLOAT(27) value and assigned 
to X. The computation part of the program assigns -354.5 to Y.

The PUT statement is interpreted as "skip to the beginning of a new line; 
output the value of X as a character string; output three blanks; and output Y 
as a character string". Since the values of X and Y are not character strings, 
these values are converted to character strings before output. The output is 
the 1i ne

-7.09 000000E + 002)6)6|6-3 . 545 000 00E + 002

The first character of this line is in column 1 of the output medium.

The PUT statement in this example requires further explanation. While the 
interpretation given for the statement is accurate, it may not be obvious how 
that interpretation was obtained. The two lists in an edit-directed statement 
are processed in parallel. That is, the sequence of processing is determined by 
the data list, but a reference is made to the format list for each item in the 
data list. When the next item in the format list is a data format i tern, such as 
A, it tells how the data value is to be processed, and the reference is 
complete. However, when the next item in the format list is a control format 
i tem, such as SKIP or X(3), it does not tell how to process the data item; and 
the control format item is executed and a new reference is made to the format 
list.
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The program just given exercises a minimum of control over its input; it 
merely requires four characters that can be converted into an arithmetic value. 
Even though it was stated earlier that the input would be supplied as a signed, 
three-digit integer, this program accepts + or ,.003l or even the very 
large number ,7E30l. The program shows a similar indifference to the format of 
the output, and leaves this format entirely to the built-in rules for conversion 
of an arithmetic value to a character-string value.

The following version of the program uses pictured 
variables to exercise the proper control of input and output:

cha racte r-s t r i ng

P2: PROC;
DCL (SYS IN,SYSPRI NT) FILE;
DCL IN PICTURE"S999";
DCL OUT PICTURE"-999.V9";
GET ED I T( IN)(AC 4 ) );
OUT = IN/2;
PUT EDITCIN,OUT)(SKIP,A,X(3),A);
END;

The variable name IN is declared PICTURE"S999n, and is thus restricted to 
precisely the signed, three-digit integer supplied as input when the program is 
properly used. Similarly, the variable name OUT is declared PICTURE”-999.V9” to 
provide a good format for the computed result. If the string ’-7.9’ is 
supplied, the CONVERSION condition occurs because this value cannot be assigned 
to IN; and thus the error is detected. When the input is ’-709’, the program 
runs to completion and outputs the line 

- 709|?W-35 4.5

which is much more readable than the output from the first version.

The program just discussed controls input/output well, but uses pictured 
character-string values for its computation instead of the floating-point 
variables used in the first version. This mode of computation causes a 
considerable loss of efficiency, especially if the computation is not so 
trivial. A third program combines we 11-contro11ed input/output with efficient 
compu tat i on:

P3: PROC;
DCL (SYS IN,SYS PR I NT) FILE;
DCL IN PICTURE"S999";
DCL OUT PICTURE”-999.V9";
DCL (X,Y) FLOAT;
GET EDITCIN)(AC 4 ));
X = IN;
Y = X/2;
OUT = Y;
PUT EDITCIN,0UT)(SKIP,A,X(3),A);
END;
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The version of the program just given uses the pictured 
OUT in a rather specialized way; IN is an intermediary 
and the computation-oriented variable X, and OUT is an 
and the output stream. PL/I has a special facility, 
for this situation, as the following, final, version of

variable names IN and 
between the input stream 
intermediary between Y 
the picture format i tern, 
the program shows:

P4: PROC;
DCL (SYS 1N,SYS PR 1 NT) Fl I F ;
DCL (X,Y) FLOAT;
GET ED 1T(X)(P"S999");
Y = -X/2;
PUT ED 1T(X,Y)(SK1 P, P" S999",X(3), P"-999.V9");
END;

This program means exactly the same thing as P3 did, and therefore needs no 
interpretation. Observe that it is identical to Pl except for the use of the 
picture format items instead of the A format items.

The preceding examples have ranged from the simplest of the data format 
items, the character-string format item, to the most powerful, the picture 
format item. The examples have also shown two representatives, SKIP and X, of 
the control format items. Finally, the examples have shown how the data list 
refers to the format list for the specification of format. The remainder of 
this discussion covers this ground again, supplying a complete description of 
the PL/I edit-directed input/output facility.

Data Format I terns

In an edit-directed statement, each data item must have a corresponding 
data format itern. Each data format item describes a field; that is, a sequence 
of characters either read from the input stream or added to the end of the 
output stream. Usually, the format item gives the width of the field; that is, 
the number of characters, including blanks, contained in the field. In 
addition, the format describes the way the value is represented in the field; 
that is, it gives the format of the value.

The format imposed on the input stream may or may not be very precise. For 
example, the format item P"S999" means, quite precisely, that "the next four 
characters of the input stream must be a signed integer with three digits”. On 
the other hand, F(10) means, less precisely, that ’’the next ten characters of 
the input stream must contain a fixed-point value representation, signed or 
unsigned, with or without a decimal point, filling the whole field or sharing it 
with leading or trailing blanks".

For output, the role of the format item is to supply the format of the 
output value representation. Again, the format may or may not be very precise. 
For example, E(20,8,9) means "output four blanks and a floating-point value 
representation that has a signed, nine-digit mantissa with eight digits to the 
right of the decimal point". On the other hand, the format item A means "output 
however many characters are necessary to represent the given value".
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The occurrence of linemarks and pagemarks in the stream are ignored during 
the processing of a data format item. During input, the field length_may exceed 
the number of character positions that remain on the current line or tne input 
stream: in this case, additional character positions in the subsequent lines are 
used. During output, the field length may require character positions beyond 
the number allowed by "linesize". In this case, new lines are created to supply 
additional character positions. If the new lines would exceed the number 
lines allowed on the page by "pagesize", the "endpage" condition occurs and 
(when the condition has been processed) a new line is begun. Thus 11 tne 
programmer wishes to ignore all or part of the layout of the output stream, he 
can do so and PL/I will process the layout automatically.

There is a format item for each of 
They are as follows:

the main types of computational da ta.

Name

character-str i ng 
bi t-stri ng 
f i xed-poi nt 
f1 oat i ng-po i nt 
comp 1 ex 
p i ctu re

Format I tern

A( w)
B(w)
F (w, f w, d m) 
E(w,fw,ms) 
C(part, part.) 
P"x"

In these format items, w (the width), fw (the fraction width), dm (the. decimal 
multiplier), and ms (the mantissa significance) can each be any expression whose 
value can be converted to an integer. Except for the decimal multiplier, am, 
the integer value must be positive or zero. The A in the last format item 
represents a p i ctu rez as described earlier, in the section on Value Storage . 
Often it is not necessary to give all the arguments, as the following examples 
will show.

STRING FORMAT ITEMS

The stream representation of a string value is processed by the st.C.Lox 
format items. For character strings, the allowed forms are

A(w) -- used for both input and output
A -- used for output only

For bit strings, the allowed forms are

B(w) -- used for both input and output
B -- used for output only

The processing of the character-string and bit-string format items are parallel 
in every respect.
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String Input

Examples of these format items for input follow:

Comment
1 nput 
Stream

Format 
1 tern

1nbound
Vai ue

2.5b A( 4 ) "2.5|6" The next four characters are read,
16|6|6)6 A( 4 ) "1616|6|6" whatever they are.
16 + 3.0-2.3 1 A(10) "16 + 3.0-2.31" The next ten characters are read.

010 B(3) "010"B Only 0 and 1 are accepted.
16116 B(3) ”1”B The blanks are deleted.
UM B(3) ""B The string can be empty.
000 B(3) "000"B Three zeroes are three bits.

012 B(3) (CONV) Only bits, leading blanks, and
"C1"B B(5) (CONV) trailing blanks can appear.

String Output

During output, a string value is left adj us ted; that is, if the string 
value does not fill the field, it is placed as far to the left as possible and 
the remainder of the field is filled with blanks. This contrasts with the 
output of arithmetic values, which are right adjusted. When w is omitted from a 
string format item, the width of the output field is determined by the length of 
the output string value. This is the only case in which the field width is not 
given explicitly in a format item. Examples of the use of these format items 
for output follow:

Outbound
Vai ue

Format 
1 tern

Output
Stream

"ABC" A(5) ABCbb
"16I6ABC" A(5) I6J6ABC
If II A(5) bbbbb
"ABC" A ABC

"1"B B(5) lbbbb
""B B(5) bbbbb
"00B B 00

" |6)6ABC|6]6" A(5) (STRINGSIZE)
"012" B( 3) (CONV)

Comment

Blanks are supplied at the right. 
Given blanks remain in the string. 
A null string is accepted.
The value determines the width.

Blanks are supplied at the right. 
No bits in a null bit string. 
The value determines the width.

Seven characters do not fit in the field. 
Only bits are allowed for B(3).

FIXED-POINT FORMAT ITEMS

The stream representation of a fixed-point value is processed by a 
f i xed-po i nt fo rmat i tern, which can have any of the following forms:

F(w) -- used for input or output
F(w,fw) -- used primarily for output
F(w,fw,dm) —used for special applications

The value of w (width) determines the size of the field. The value of fw 
(fraction width) determines the number of fractional digits in the 
representation. The value of dm (decimal multiplier) determines a multiplier 
for the transmitted value.
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F i xed-Po i nt Input

Usually the form F(w) is used for input and the fraction-width and 
decima 1-mu 11ip1 ier arguments are omitted. Input is performed as follows:

• A character string of w characters is read from the input stream. The 
string must contain an optionally-signed, real, fixed-point constant 
or else must be entirely blank.

• The input string is assigned to an intermediate variable of data type
REAL. DECIMAL FIXED(p,q). If (1) the input constant is DECIMAL, (2)
the.input constant has a precision and scale-factor within the 
maximums of GCOS PL/I, and (3) fw and dm are omitted from the format 
item, then the precision attribute (p,q) is taken directly from the 
input constant.

The value of the intermediate variable is assigned to the target given 
i n the data list.

one from the stream to an

enough to convey

given, two assignments are made;

and is not used in any other way.
the value

variable. These 
statement; that is 
or the conversion cannot be performed for some reason 
occurs.

In the
intermediate variab1e and a second from the intermediate variable to the target 

assignments are performed as if they arose from an assignment 
the necessary conversion is performed and, if the assignment

Examples of the 
format i tern fol low.

processing of a five-character input field by a fixed-point

I nput 
Stream

-7.2)6 
J67.2J6 
J6J67.2 
7.2)6)6

J6)6J6J6)6

72E-1 
-7)6.2 
7.2DB

72)6)6)6 
72)6)6)6 
7.2)6)6 
7.2)6)6

Format

7.2)6)6 
7.2)6)6 
72)6)6)6

Inte rmed i ate
Vai ue_________ Comment

-7.2 
+ 7.2 
+ 7.2 
+ 7.2

+ 0 .
+ 0.

(CONV) 
(CONV) 
(CONV)

+ .72 
+ 72.
+ 7.2
+ 7.2

+.0072
+7200.
+ 720 .

The position of the value 
representation in the field 
does not affect its 
i nterpretat i on.

If the field is blank, its value is 0.
If w=0 there is no input, but value is 0.

If the input is not a valid fixed-point 
value representation, the CONVERSION 
condition is signalled.

fw=2 gives two fractional digits, and 
fw=0 (default) gives none.
But when a decimal point is in the 
stream, fw is ignored.

dm=-3 multiplies input by 10**-3 = .001 
dm=3 multiplies input by 10**3 = 1000 
fw=2 gives two fractional digits, 
then dm=3 multiplies by 1000.

The last two groups of examples show the use of a nonzero fraction width or 
decimal, multiplier. Such format items should be used only when there is a clear 
justification for accepting input values that are not "true" values; this might 
occur, for example, when input is being prepared by an automatic device that can 
only produce a sequence of digits (but no decimal point or scale factor) on its 
output med i urn.
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When f w is omitted, it is assumed to be zero; therefore,, a value 
representation without a decimal point is treated as an integer, which is the 
everyday convention. When dm is omitted, it is also assumed to be zero; 
therefore, the value is multiplied by 10**0 = 1. Thus the defaults are chosen 
so they leave the transmitted value unchanged.

Fixed-Point Output

Usually the form F(M) or F(w,fx) is used for output, and the multiplier is 
omitted. When the form F(w) is used, it is assumed that fw - 0. An 
intermediate variable is used with output in the same way. as ^as previously 
described for input. The data type of the intermediate variable is REAL DECIMAL 
FIXED(p,q). The scale factor, is fw and the significance, p., is as large as 
w allows. That is, £ is obtained by reducing by one if necessary to allow.for 
a minus sign and (when fw is not zero) by one more to.allow for a decimal point; 
however, p cannot exceed the maximum GCOS PL/I precision, 59. The. outbound 
value is converted to an attractive,.right-adjus ted value representation in the 
output stream, as shown in the following examples:

Outbound
Value

-3.
-3.
-3.

+17.46
+17.46
+17.46
+17.46

+ 0.
+ 0.

+17.46
+17.46
+17.46

Format 
I tern

Output
Stream Comment

-3.00 fw=2 provides two fractional digits, and
|6|6|6-3 fw=0 (default) provides none.
(SIZE) -3.000 does not fit in the field.
3.000 3.000 (without sign) does fit.

17.46 fw=2 fits the exact value (in this case),
1617.5 fw=l rounds to one fractional digit, and
|6|6J617 fw=0 rounds to an integer.
(ERROR) (fw must be nonnegative)

F(5,3,-l) 
F(5,0,2) 
F(5,0,-l)

(60.00 There are many ways
|#J600O to print zero.

1.746 dm=-l multiplies value by 10**-l = .1 
161746 dm =2 multiplies value by 10**2 = 100 
j6|6|6|62 then fw = 0 causes rounding.

The last group shows the use of a nonzero decimal multiplier with output. The 
use of this feature should be restricted to the applications that are similar to 
its use with input; that is, it should be used to change the .true stored value 
of a number to some scaled output form for a specialized application.

FLOATING-POINT FORMAT ITEMS

The stream representation of a floating-point value is processed by the 
floating-point format itern, which can have any of the following forms:

E(w) -- used for input or output
E(w,£w) -- used primarily for output
E(w,fw,ms) -- used only for output

The value of w (the width) determines the size of.the field. The value of fK 
(fraction width) determines the number of fractional digits in the mantissa of 
the representation. The value of ms (mantissa significance) determines the 
number of digits in the entire mantissa.
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Floating-Point Input

Usually the form E(w) is used for 
mantissa-significance arguments are omitted.

input and the fraction-width and 
Input is performed as follows:

A character string of w 
string must contain (1) 
ei ther fi xed-poi nt or 
which is interpreted as

characters is read from the input stream. The 
an optionally-signed, real constant that is 
floating-point or (2) a sequence of blanks, 

zero.

The string is assigned to an
DECIMAL FLOAT(jd), where £ is

intermediate variable of data type REAL 
the precision of the input constant.

The value of the 
corresponding target

intermediate variable 
i n the data list.

is assigned to the

The role of the intermediate variable used here is the same as that used with 
the fixed-point format item. It exists only to convey the input to the target 
with the required conversions.

Examples of the processing of a seven-character 
floating-point format item follow:

i nput field by a

Input Format
Stream I tern

1.3E700 E(7)
0-50+40 E(7)

00 5016 .0E(7)

|6161616161616 E(7)
ECO)

1.3E7.0 E(7)
-5O + I6J6J6 E(7)

00013E7 E(7,2)
00013E7 E(7)
001.3E7 E.(7,2)
001.3E7 E(7)

Inbound
Va 1 ue

(CONV)
(CONV)

Comment

A floating-point or fixed-point value 
representation is accepted at any 
position in the input field.

If the field is blank, its value is 0.
If w = 0, no input occurs, but value is 0.

If the input is not valid, the 
CONVERSION condition occurs.

fw = 2 gives two fractional digits, and 
fw = 0 (default) gives none.
But when a decimal point is in the 
mantissa, fw is ignored

show theexamp 1es an 
an

assumed decimal point. As 
f1 oatine-ooint format items

use of a nonzero fraction width, fw. . When 
a decimal point, fw supplies the position fo 

in the case of the fixed-point format item, 
should be used only when there is a c

i _ J- I— _ J- — 4- i • +- v- i i ’ \ / 3 1 I I C1C

Floating-Point Output

For output, 
FLOAT(£), where £ 
suppli ed by the 
Omitted arguments

the data type of the intermediate variable is REAL DECIMAL 
is the precision derived from the data type of the value 
data item. All three forms of the E format are commonly used, 
are interpreted as follows:

E(w,fw) means
E(w) means

E(w,fw,fw+1) 
E(w,£-1,£)
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Thus, when the mantissa significance is not specified in the format item, it is 
calculated so that the mantissa has a one-digit integer part. When neither fw 
nor ms is given, the precision of the output value itself, £, is used. The 
outbound value is converted to an attractive rep resentation in the output 
stream, as shown in the following examples:

Outbound 
Vai ue

7.5
7.5
7.5
7.5

7.5
-7.5 
750 
0

+7.5E+0
+7.500E+0

Format Output 
Stream

075.OOE-OO1 
J6J67 5 00 E-0 03 
00.750E+001 
0.7500E+001

07.500E+000 
-7.500E+000 
07.500E+002 
00.000E+000

0007.5E+000 
07.500E+000

Comment

When both fw and ms are given, the 
decimal can be adjusted.
Note leading zero when fw=ms.
Fits because there is no sign

When ms is not given, the 
mantissa has f w+1 digits, so there 
is one i ntege r digit
Zero has a zero exponent.

When fw and ms are not given, the 
precision is taken from the value 
itself.

COMPLEX FORMAT ITEMS

The stream rep resentation of a complex value is processed by the comp lex 
format j,tem, which can have either of the following forms:

CCpajit.) -- used for input or output
C( parti, par t2 ) -- used for input or output

The part/ partl_, or part2 can be any format item for a real value; that is, one 
of the fol lowing:

fixed-point format item
floating-point format item
picture format item

This format item always describes two values in the stream: the real and 
imaginary parts of the complex value. If only one part is given, it is used 
twice. Although imaginary values are usually followed by I in PL/I, this is not 
the case when the complex format item is used.

Complex Input

Examples of the use of this format item follow:

I npu t
Stream

0030-2.3
03000-2.30
+2.32E-3-6.80E-3

Forma t
I tern

C(F(3),F(5) )
C(F(5 ))
C ( E ( 8 ) )

0300000000

03000-2.31

C(F(5 ) )

C(F(5) )

Inbound
Vai ue Comment

+3.-2.31 The
+3.-2.31 two
+ 2.32E-3-6.80E-3I

field is 
fields.

treated as

+ 3.+0. I

(CONV)

A blank part is a 0.

I i s no t a 11 owed.
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Complex Output

Examples of the use of the complex format item to process output follow:

Outbound
Vai ue

+3.0+2.31
+2.32E-3-6.80E-3I

+0.0E+0-3.0E+2I

+ 3.0-2.3 I
+3.0+2.31

Format 
Item

Output
Stream

C(F(5,2))
C(E(11,2),E(11,2,2))

03.0002.30
002.32E-OO30-O.68E-002

C(F(8 z2)) 00000.0 00-3 00.00

C(F(4Z2)) (SIZE)
C(F(4,2)) 3.002.30

PICTURE FORMAT ITEMS

The stream representation of any computational value (except COMPLEX) can 
be processed by an appropriate picture format item, which has the form

P"x"

where x. is any of the pictures described under "Pictured String Storage" in the 
section on "Value Storage".

When 
following

Lnp u t is performed under control
steps are performed:

of the picture

The length of the 
determined, and a 
and assigned to an

character string described by 
string of that length is read from 
intermediate variable of data type

The value of the intermediate variable is assigned 
variable.

format i tern, the

the picture is 
the input stream 
PICTURE"x".

to the target

Both of the assignments performed during the picture-format input require 
further comment. The first assignment changes the data type of the input 
string, but never changes the string itself. Suppose the input stream supplies 
the characters -709 and the format item is P"S999"; then the input value is 
"-709" and has the data type CHARACTER. After assignment to the intermediate 
variable, the value is still -709, but it now has the data type PICTURE"S999". 
Thus the string has been checked for conformity with the picture and has been 
given the interpretation associated with the picture.

The second assignment entails the conversion of the value of the 
intermediate pictured variable to the data type of the target value. Since the 
data type of the target can, in various cases, be any PL/I data type, there are 
many possible conversions.

When ouJUDurt is performed under control of a picture format item, the 
following steps are performed:

• The value supplied by the source expression in the data list is 
assigned, to an intermediate variable of data type PICTURE"x", where x 
is the picture given in the picture format item.

• The value of the intermediate variable, which is already a character 
string, is added to the output stream without being changed.
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Just as with input, two assignments are made; one from the source expression in 
the data list to the intermediate variable, and a second from the intermediate 
variable to the output stream. If an assignment cannot be performed, the 
appropriate PL/I conditLori occurs.

has an

useful as an identifier of some kind.
each classification are now given.
informal summary of the definitions given for pictures in the section on

and character. A fixed-p 
form of an optionally- 
describes a character 
floating-point constant. ___—---------- .
might not be suitable for interpretation as an arithmetic value but could be 

an identifier of some kind. Examples of picture format items from
The commentary given with the examples is an

"Vaiue
Storage".

Fixed-Point Pictures

The f i xed-po i nt picture format item is considered here, 
are given. For each 9 in a picture, a digit appears in 
character position of the stream; for an S, a sign (’ + ’ or 
and for a a blank or a (but not a ’ + ').

and many examples 
the cor responding 
but not a blank);

Stream Format Interna 1 Comment

-823 P"S999" -823 . A signed, three-digit
+ 823 P"S999" + 823 . i nteger wi th
16823 P"-999" + 823 . various signs.
-823 P"-999" -823 .

The examples above should be read in both directions. For example, the first 
line should be read first as the transmission of the characters ’-823’from the 
i nput stream to a target, and then read a second time as the transmission of the 
value of an internal source with value ’-823 .’ to the ojutpuJt stream. This 
approach will be used for subsequent examples of the picture format item.

A Z matches a digit; but if the digit would be a J_eadJjlg. zero, it is 
suppressed (replaced by blank) on output and may or may not be suppressed (at 
the option of the user who prepares the data) on input. A sequence such as SSS 
is like SZZ except that the sign "drifts" to the right when leading zeroes are 
suppressed. The sequence 1----- 1 represents a "drifting" minus sign in the same 
way.

Stream Format Internal.

b|66 8 ZZZ9 +0068.
0J6J65 ZZZ9 +0005.

ZZZZ +0000.
|6 + 68 SSS9 +0068.
16)6-5 ---9 -0005.

Comment

Zero suppression 
and drifting si gns 
for input or output

Observe that a blank field can appear in the stream, but only when there is no 9 
in the picture.
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In ordinary applications of the picture format item, the decimal point is 
indicated in the picture by two characters, V., which matches the in the 
s t rearn.

S t ream

-53.60 
bb- .60 
bb829 .

Format

SSSV.99
SSSV.99
----9V.

Interna1

-053.60
-000.60
+00829.

Comment

Ordinary decimal 
points for input 
or output.

When V and are not adjacent in the picture, the transmitted value is 
changed. The V indicates the position of the decimal point in the internal 
representation of the value, and the indicates the position of the decimal 
point in the stream representation. Details are given in the section on "Value 
Storage".

P"S(7)9" means 
means

P"S9999999"
P"SSSSSV.99"

A parenthesized integer can be used in a picture 
the following picture character. For example,

The parenthesized 
an expression and

integer must be a constant; that is, it 
computed when the program is executed.

cannot be w r i 11 e n as

When one of the assignments in the interpretation of a picture format item 
would lose a digit at the left end of the value, the SIZE condition occurs. But 
when an assignment would lose a digit at the r i ght end of the value, that digit 
is truncated, without warning, and no condition occurs. Suppose the target of 
input or the source of output has the data type DEC(6,2). The following 
examples show various instances of digit-loss:

S t ream Format D.EC(^.2). Comment

-9.2362
-9.2362

P"-9.9999"
P"-9V.999"

(SIZE) 
-0009.23

Input error.
Input approximation.

(SIZE) P"S999" +8264.00 Output error.
+ 82 P"S99" +0082.99 Output approximation.
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The most remarkable aspect of the picture is 
symbols. A 1 $' can be used and can "drift” 
Commas can be used and a comma is suppressed when 
suppressed. The suffixes CR and DB are allowed.

its handling of commerc i al 
to the right as a sign can do. 
an adjacent leading zero is

Stream Format 1nterna1 Comment

$129.88 $999V.99 +129.88 Commerci al symbols
J6J6$6.50 $$$9V.99 +006.50 for input
$2,619 (£•Yr/ v v v +2619. and output.
£J6J6$ 81 $$,$$9 +0081.
$9.28CR $9V.99CR -9.28

These examples of the fixed-point picture format items do not exhaust all 
the possibilities, but the omitted possibilities are less frequently used. For 
a complete description of fixed-point pictures, see the section on "Value 
Storage”.

F1oat i ng-Point P i ctu res

The mantissa of the f1 oat i ng-po i nt picture can be any fixed-point picture 
that does not contain the commercial symbols, CR, and DB. The exponent 
picture can have S or ,-1 as its sign or the sign can be omitted; and up to 
three digits can be used, with Z for leading digits if desired. If an E is not 
wanted between the mantissa and the exponent, K is used in the picture instead 
of E and nothing appears in the stream.

Stream Format Vai ue

+3.939E+002 P”S9V.999ES999” +393.9 
b3.939E+02 P”-9V.999ES99” +393.9 
1^3.939 + 02 P”-9 V . 9 99 KS99 ” +393.9 
£3939-02 P”-9999KS99" +39.39

Character Pictures

A character picture can be
character), A (matches any letter,

any sequence of the characters X (matches any 
upper or lower case, or blank), or 9 (matches

any digit or blank). The picture must not be all nines, since 
fixed-point picture in that case.

i t wou1d be a

Stream

3/MAY/74
29AXQ6
IzWfeW

A 9 can match a

Format

P”9XAAAX99”
P”99AAAX”
P”99AAAX"

b1ank only in a

Vai ue

"3/MAY/74”
"29AXO6”

Comment

Character string, 
input and 
output

character pi cture.
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Control Format I terns

In an edit-directed statement, provision must be made for those positions 
of the stream that appear between the value representations. Specifically, the 
contribution to layout made by the blanks, linemarks, and pagemarks must be 
taken into account. The cont.ro 1 f ormat i terns are provided for this purpose. 
Two examples of control format items were given in the example program, namely 
SKIP (start a new line) and X(3) (skip three character positions).

An output stream with the attribute PRINT can be viewed as divided into 
pages and lines and character positions. Any other stream, whether for input or 
output, is divided only into lines and character positions within the lines. A 
character string that is used as a substitute for a stream (by means of the 
STRING option of a stream input/output statement) is a single line that is 
divided only into character positions.

When an input stream is open, it has a s t ream pointer associated with it. 
The stream pointer indicates the next character position that will be read (or 
skipped) by the next input operation. In contrast, an output stream is created 
as output is performed; that is, character positions as well as the characters 
themselves are added to the end of the stream. But it is legitimate and very 
useful to speak as if the output were created in advance as a sequence of blank 
character positions arranged in lines and pages. This convention allows the use 
of a stream pointer with an output stream and permits language such as "advance 
the stream pointer to the first character position in the third line after the 
cu r rent 1i ne".

There are five control format items, as follows:

X(e) 
COLUMN(e) 
SKIP(e) 
LINE(e) 
PAGE

skip e. character positions 
skip to column e of a line 
skip e. 1 i nes
skip to line e of a page 
skip to the next page

The e. in each of 
converted to an 
X and SKIP only)

these format items can be any expression whose value can be 
integer. In all cases, the value of e. must be positive or (for 
zero.

THE X FORMAT ITEM

The X format item has the form

X(e)

Let n. be the value of the expression e 
moves the stream pointer forward by n 
to line or page to page if necessary.

for a given execution; then the item 
character positions, proceeding from line 
If n.= 0, then the item does nothing.

14-37 DE05



THE COLUMN FORMAT ITEM

The COLUMN format item has the forms

COLUMN(e) 
COL(e)

Let n be the value of the expression e. for a given execution; then the item 
advances the stream pointer to the next character position that is in column n.; 
that is, to a character position that is the nth character position of a line. 
This interpretation implies that if the stream pointer is beyond the nth column 
the operation is applied to the next line. If n exceeds the length of the line 
(so the specified character position does not exist), the stream pointer is set 
to the beginning of the next line.

THE SKIP FORMAT ITEM

The SKIP format item has the form

SKIP(e)

Let n be the value of the expression e. for a given execution; then the item 
moves the stream pointer to the first character position of the nth line after 
the current line. If n = 0/ then the stream pointer is set back to the 
beginning of the current line and the stream is prepared for overprinting of the 
current line; but this case is allowed only for an OUTPUT PRINT stream.

THE LINE FORMAT ITEM

The LINE format item has the form

LINE(e)

Let n be the value of the expression e for a given execution; then the item 
moves the stream pointer to the next character position that is the first 
character position of the nth line of a page. If the stream pointer is already 
at such a character position, the stream pointer is not moved. If the stream 
pointer is at a line whose number is greater than n./ the stream pointer is moved 
to the first line of the next page.

THE PAGE FORMAT ITEM

The PAGE format item has the form

PAGE

The item moves the stream pointer forward to the first character position of the 
next page.

A control format item can be used only where its use would be reasonable. 
Any control format item can be applied to an output stream with the PRINT 
attribute because it has lines and pages. The LINE and PAGE items cannot be 
applied to a stream that is not a PRINT output stream because such a stream is 
not divided into pages. The SKIP, LINE, and PAGE items cannot be applied when 
the STRING option is used because a pseudo-stream is not divided into pages or 
1i nes.
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A control format item is executed only when PL/I is "on the way” to a data 
format item; that is, when PL/I is prepared to output a value and is reading 
through the format list toward the next format data item.

Format Lists

In its simplest form, a format list is a sequence of format items 
by commas. However, there are three facilities for enhancing the 
format list; namely, the remote format item, the iterated format item, 
”end-around” repetition. These facilities are discussed in the 
pa ragraphs.

separated
form of a

and the
following

REMOTE FORMAT ITEMS

The remote format item has the form

R(ref) -- use a remote format list

The ref must be a reference that has a scalar format value; that is, a value 
that designates a FORMAT statement. Let fx be the format list in the designated 
FORMAT statement. When R(ref) is executed, the scanning of the format list in 
which the remote format item appears is suspended and format items are taken 
from fx until the end of fx is reached.

ITERATED FORMAT LISTS

The i te rated fo rmat list can have any of the following forms:

lox i tem -- constant i terat i on of an i tem
i nt (fl) -- constant i terat i on of a format list
(e) i tem -- computed i terat i on of an i tem
(e) (11) -- computed iteration of a format list

In these forms, i n t is an unsigned integer, i tern is a data, control, or remote 
format item, fl is a format list, and e is any expression whose value can be 
converted to -an integer. Suppose the value of i n t or e. (whichever is present) 
is n. Then the iterated format list is interpreted as a sequence of format 
items composed of n. repetitions of i tern or fl (whichever is present). If n is 
zero, the iterated format list is ignored.

END-AROUND REPETITIONS

The "end-a round” repetition is a simple feature of the edit-directed 
statements. An outermost format list in an edit-directed statement is repealed 
when the end of the list has been reached. An outermos.t l_Lst is the format list 
paired with a data list in the statement. The effect of this convention is that 
the format list can never "run out” before the corresponding data list does.
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The program fragment that follows shows the use of the compound format 
i terns:

• • •
F5: FORMATCA(10 ), 2 P"BBB--9V.99" );

• • •

I = 5;
PUT(...)(PAGE, ( |-2)(SKIP, R(F5), COL(20), A));

The format list in the PUT statement is equivalent to the following format list:

PAGE,
SKIP, A(10), P11 BBB--9V . 9911,
SKIP, A(10), PHBBB--9V.99u,
SKIP, A(10), PtrBBB--9V . 99" , 
PAGE,
SKIP, A(10), PI,BBB--9V.99H, 
... and so on, ad infinitum

PHBBB--9V.99H, COL(20), A, 
P" BBB--9V . 9911, COL(20), A, 
PHBBB--9V.99", COLC20), A,

■ P"BBB--9V.99", COLC20), A,

In this format list, the data format items have been underlined to distinguish 
them from control format items. It is the data format item that is matched with 
each item in the data list, so the portion of the format list shown would 
accommodate 16 items from the data list.

The edit-directed statement uses the same form of data list as the 
list-directed statement; and the interpretation of that list to produce a simple 
list of data items was given in the discussion of list-directed input/output. 
Now, immediately above, the interpretation of a format list to produce a simple 
list of format items has been given. On the basis of these interpretations, the 
items of any data list can be matched to the items of the cor responding format 
list.

Guidelines for Edit-Directed Input/Output

Edit-directed input/output is preferred whenever the programmer wants to 
assume control over the format of input or output. It provides a wide variety 
of facilities for specifying format; and even within edit-directed techniques 
there is a range of control over details. At one extreme, the programmer can 
use the fixed-point format item and require, in a rather indefinite way, that an 
optionally-signed constant appear in certain columns of a line. At the other 
extreme the programmer can use a picture and control the contents of a line on a 
character-by-character basis.

The format list associated with an edit-directed statement can easily 
become complicated and unintelligible. It is important that a layout diagram be 
made of the document being read or written, and that the format-list be based on 
this diagram. The FORMAT statement can be used to structure a complicated 
format list just as the procedure is used to structure a complicated program.
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The three disciplines of stream input/output can be mixed. For example, 
certain codes at the beginning of an input stream could be read by an 
edit-directed GET statement, and then a specified number of values could be read 
by a simple list-directed statement. However, care must be taken when switching 
back to edit-directed input. Since edit-directed input works on a strict column 
by column basis, a serious error can occur if the effect of the preceding 
non-edit-directed statement is not correctly determined.

THE STRING OPTION

In order to interpret the input/output statements, PL/I must have a large 
and complicated collection of string manipulation operations. In particular, 
the process of applying a format list to the input stream to produce values or 
of applying a format list to a value to produce an output stream is a 
complicated operation. Accordingly, PL/I has a facility to make this string 
manipulation available independent of the performance of input/output.

A GET statement can have an option of the form STRINGCe.) instead of the 
usual file option, where e. is any character-string expression. In this case, 
the statement will take its input from the value of e as if that value were a 
complete stream data set. Similarly, a PUT statement can have an option of the 
form STRING(_t) instead of the file option, where t is any target that can accept 
a character-string value. In this case, the statement will assign its entire 
output to X as if that target were a stream data set.

Linemarks and pagemarks cannot be used when the STRING option is used. If 
a GET statement with a STRING option "runs off the end" of the pseudo stream, 
the ERROR condition occurs rather than the ENDFILE condition. Thus the 
extension of input/output statements to the use of the STRING option applies 
only to the editing process itself and not to those aspects that are oriented 
toward input/output.

A useful application of the string option arises in connection with a 
troublesome property of stream input: the input of characters cannot be 
controlled by anything that appears later in the stream. Consider an example of 
this problem. Suppose 80-character card-images are being read and they can 
occur in either of two formats depending on whether an ’*’ or a blank appears in 
column 80. This problem can be solved by using the following statements:

GET ED IT(TEMP)(A(80));
IF SUBSTRCTEMP,80,1) = "*"

THEN GET STRING(TEMP) EDITCC1,
ELSE GET STRING(TEMP) EDIT(C1,

C2, C3)(P"$$$$$V.99DB", X(7));
C2, C3)(P"$$$$$V.99-", X(8));

f i this sequence of statements is equivalent toIf a card ends with

GET EDITCC1, C2, C3)(P"$ $ $$$V.99DB");

and otherwi se the sequence is equivalent to

GET EDITCC1, C2, C3)(P"$$ $ $ $ V.99;

The use of the string option allows the program to "look ahead" in the input
stream and select a format appropriate to the coming values.
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CONDITIONS FOR STREAM INPUT/OUTPUT

In the following discussion, the conditions that occur during stream 
input/output are described. They are:

CONVERSI0N(ref)
ENDFILE(ref)
ENDPAGE(ref)
NAME(ref)
TRANSMIT(ref )
UNDEFINEDFILE(ref)

where ref is a reference that yields a file value. The general rules for the 
use of the conditions are given earlier, in the section on "Condition Handling". 
Only some remarks about their application to input/output will be given here.

Each condition is defined separately for each file value, and thus for each 
file-state block. The identifier ENDPAGE by itself is not a valid condition; 
but if RECORD3 is a file constant name, then END PAGE(RECORD3) is a valid 
condition. Consider the statement

ON ENDPAGE(RECORD3 ) PUT FILE(RECORD3) PAGE LINEC3);

When this statement is executed, it establishes the PUT statement as the ON un Ll 
for the condition ENDPAGE(RECORD3). When the end of a page in the output stream 
associated with RECORD3 is reached, the ENDPAGE is signal led and the ON unit is
executed. When the block that contains 
unit is reverted, and no longer responds

When a condition is signalled, the 
actions, as follows:

the ON statement is deactivated, the ON 
to a s i gna1.

PL/I processor takes either of two

If an ON unit is established for the condition, then that ON unit is 
executed. If the execution of the ON unit runs to completion, then 
control goes back to the point in the program at which the condition 
occurred, and execution is resumed in a reasonable way (depending on 
the particular needs of the statement involved).

If no ON unit is established for the condition, then the default ON 
unit is executed. The default ON unit for each condition is described 
earlier, in the section on "Condition Handling".

A stream input/output statement can evaluate expressions, and during that 
process a FIXEDOVERFLOW, OVERFLOW, UNDERFLOW, or ZERODIVIDE condition may occur. 
Further, a stream input statement assigns values to targets, and during that 
process a SIZE, STRINGRANGE, STRINGSIZE, or SUBSCRIPTRANGE condition may occur.
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The PL/I processor saves certain useful values before signalling .a 
condition. For each kind of value saved, there is a s.tack and a b u L1t zla 
funct i on. Just before the condition is signalled, the value is placed on the 
top of the stack, and after completion of the established ON unit it is removed. 
The built-in function is used to access the value during the execution of the ON 
unit.

For example, just before any of the conditions mentioned in this section is 
signalled, the file name, expressed as a character-string value, is placed at 
the top of the stack controlled by the ONFILEC) built-in function. During the 
execution of the established ON unit for the condition, the file-name 
character-string can be accessed by using the reference ONFILEC ) . When 
execution of the ON unit is complete, the file name character string is removed 
from the stack.

The CONVERSION Condition

The CONVERSION condition occurs when an attempt is. made .to convert an 
invalid character string or pictured value to an arithmetic or bit-string value. 
Just before the condition is signalled, three values are saved in the stacks 
controlled by the condition built-in functions. The character string being 
converted is placed at the top of the stack controlled by ONSOURCEC). The 
leftmost character in the string at which conversion failed, which is sometimes 
the source of the error, is placed at the top of the stack by ONCHARC). The 
file name is saved as described in the preceding paragraph.

The ONSOURCEC) and ONCHARC) functions can be used as pseudo-variab1es, and 
the ON unit can assign new variables to them; in this way, it is possible to 
"correct" a character string that is causing trouble. When a normal return from 
the ON unit occurs, the PL/I processor resumes its attempt to convert the 
offending character string. If the program has supplied a new and valid value 
by means of ONSOURCEC) or ONCHARC) then the conversion succeeds, and execution 
continues; otherwise, the CONVERSION error occurs again.

The ENDFILE Condition

The ENDFILE condition occurs when an input statement attempts to read 
beyond the end,of a data set. After an established ON unit is executed, the 
PL/I processor resumes with the statement after the input statement in which the 
condition occurred. If a later attempt is made to read the data set, the 
condition will occur again. The file name is saved in the stack controlled by 
ONFILEC).
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The ENDPAGE Condition

The ENDPAGE condition occurs when an output statement completes the n.th 
line of a page (by writing a linemark) and ri is equal to the "page size” 
associated with the output file. The condition can be caused in either of two 
ways, and the action taken by the PL/I processor on return from an established 
ON unit varies accordingly. If the condition was caused by an attempt to write 
a data value in the output stream, the output of the data is completed when 
execution resumes. But if the condition was caused by the interpretation of a 
SKIP option or format item or a LINE option or format item, then the option or 
format item is ignored; it is assumed that the ON unit starts a new page and 
eliminates the need for the blank lines.

When the ENDPAGE condition is signalled, the 1i ne number associated with the 
file has already been increased by one and is therefore equal to the PAGE SIZE 
plus one. Normally, the ON unit will include a PAGE option or format item and 
will thereby set the 1i ne number back to 1.

Just before the ENDPAGE condition is signalled, the file name is saved in 
the stack controlled by the ONFILEC). If there is no established ON unit for 
the condition, the PL/I processor does not treat the condition as an error; 
instead, a pagemark is added to the output stream, the 1i ne number is set to 1, 
and execution of the program continues.

The NAME Cond i t i on

The NAME condition occurs only during data-d i rected input. Specifically, 
the condition occurs when a stream assignment is read whose variable name does 
not match a variable name in the data list of the controlling GET statement or a 
name of a component of a variable that is named in the data list. Just before 
the condition is signalled, the offending assignment from the stream is placed 
at the top of the stack controlled by ONFIELDC), and the variable is therefore 
available as a character-string value for inspection with the ON unit. The file 
name is placed at the top of the stack controlled by ONFILEC). After an 
established ON unit is executed, the PL/I processor returns to the data-directed 
input as if the processing of the offending stream assignment were complete.

The TRANSMIT Condition

The TRANSMIT condition occurs when data cannot be transmitted reliably 
between a data set and PL/I storage. Just before the condition is signalled, 
the file name is placed at the top of the stack controlled by ONFILEC). After 
an established ON unit is executed, the PL/I processor resumes with the 
statement that follows the input/output statement that caused the condition; but 
the value of the data transmitted by the statement is undefined.

The condition is usually caused by factors beyond the programmer’s control, 
such as a hardware failure, so the recovery procedure cannot be initiated until 
the hardware is repaired.
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The UNDEFINEDFILE Condition

The UNDEFINEDFILE condition occurs when an OPEN statement attempts 
unsuccessfully to open a file. The condition can occur, when, for example, an 
attempt is made to open a record data set for stream input, or when, for another 
example, the TITLE option specifies a nonexistent file. Just before the 
condition is signalled, the file name is placed at the top of the stack 
controlled by ONFILEC). After the established ON unit is executed, the program 
resumes execution at the statement following the offending OPEN statement.
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SECTION XV

RECORD INPUT/OUTPUT

The record input/output facility of PL/I is independent of the stream 
input/output facility described in the preceding section; that is, it has its 
own data sets, statements, and programming techniques. The record input/output 
facility is oriented toward communication with permanent storage. The role of 
such storage is to accept values from PL/I at one time and then return them, 
unchanged, at a later time; therefore, each value is transmitted just as it is 
found in PL/I storage. In contrast, stream input/output is oriented toward user 
communication and has many ways of converting between internal values and 
external representations of those values.

This section begins with a description of the two kinds of data that are 
involved in record input/output: the record data set, which is the actual 
subject of the input or output, and the f i1e-state b1ock, which shows the status 
of the operations on the record data set. In order to make this section 
complete and independent, the description of the file-state block repeats some 
material already given in the preceding section on ’’Stream Input/Output”. The 
section continues by giving a summary of the operations that are performed as a 
part of record input/output. Once this foundation has been established, the 
section proceeds to a definition of the statements that are used for record 
input/output: first, the statements that open and close files and then the 
statements that perform the actual i nput/output ope ra t i ons. Next, the section 
describes based i nput/output, which is an advanced and specialized feature of 
record input/output. Finally, the section describes the cond i t i ons that occur 
in connection with record input/output.

RECORD DATA SETS

A record data set is a collection of records. Each record is a single PL/I 
value; that is, it is a copy of a value that once existed in PL/I storage. The 
record can be a single scalar value; indeed, it can be a ”BIT(1)” value and thus 
represent only one bit. On the other hand thus, the record can be an aggregate 
value such as a large and complicated structure or an array of many elements. 
Some of the costs of transmitting and storing a record are the same for records 
of all sizes; therefore, large records are preferred. For example, if a 
programmer has a choice between treating an array as a single record or treating 
each element of the array as a record, then he should choose the first 
alternat i ve.
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The word ’’record" is used here to mean a logical record; that is, a 
collection of information gathered together because it belongs together. 
Hardware storage devices do have phys i ca1 records; that is, units that reflect 
the architecture of the storage device. The relation of the PL/I logical record 
to the physical record is similar to the relation of the PL/I variable to the 
hardware computer word. In both cases, PL/I provides an elaborate and effective 
mechanism to allow a programmer to choose units that correspond to the logical 
requirements of the data and to ignore the boundaries that are built into the 
ha rdwa re.

The Organization of Record Data Sets

A record data set can be keyed, sequent i a 1 , or keyed sequent i al. In a 
keyed data set, each record has a unique key associated with it that can be used 
to access the record d i rectiy without scanning through the file. In GCOS PL/1, 
the key is a character-string value of length up to 32 characters. In a 
sequent i a 1 data set, the records are arranged in an order that does not change 
and that can be used to pass from one record to the next when the file is being 
processed. In a keyed sequential data set, a record can be accessed either by 
its key or by its sequential position. The organization of a data set 
determines the kinds of operations that can be performed on it.

When a file is being operated on, it has two indicators associated with it. 
The cu r rent reco rd indicator designates the record that has been most recently 
operated on. The next record indicator designates the record that will be read 
if the next operation is a sequential read operation; it is defined only for a 
sequential file. Whenever the current record indicator is reset, the next 
record indicator is adjusted to designate the next record in sequence. Under 
certain circumstances, an indicator is set to null (and does not point to any 
record; for example, when current record indicator is set to designate the last 
record of a file, the next record indicator becomes null.

GCQS Files

There are a variety of ways to implement a record data set, each reflecting 
different hardware requirements and software techniques. GCOS PL/I has three 
implementations for a record data set: CONSECUTIVE, INDEXED, and REGIONAL 
files.

A CONSECUTIVE file can be used for an unkeyed sequential PL/I data set. 
Its records are arranged in the order in which they are created. A CONSECUTIVE 
file is either on a direct access device or on a magnetic tape.

An INDEXED file can be used for any keyed PL/I data set, sequential or not. 
Its records are arranged in order of ascending keys. That is, if the key kl. 
precedes the key k2 in a file, then the relation kl < k2 (as defined for PL/I 
character strings) must be true. A record can be rewritten in any way; that is 
the storage type of the new record need not conform to that of the old record. 
An INDEXED file is always stored on a direct access device.
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A REG IQNAL file can be used for any keyed PL/I data set.. A 
consists of a number of regions, cor responding to the fixed 
records of the file. A REGIONAL file is always stored on a 
dev i ce.

REGIONAL file 
length logical 
di rect access

RECORD FILES

A connection must be established between a 
input/output and the GCOS file on which the operation 
analysis of this connection follows:

statement that performs 
is to be performed. An

The connection begins with the f i1e 
input/output statement.

The file option has as its argument 
evaluation of the file reference yields

opt i on that appears in an

a file reference, and the 
a file value.

The file value designates a file-state block, which is a set of values 
that are used by the PL/I processor in carrying out input/output 
ope rations.

The file-state block contains a file code that designates a GCOS file 
and thus completes the connection between input/output statement and 
file.

The main components in the connection just described are the 
and the file reference; these components are described 
paragraphs.

f i1e-s ta te block 
i n the fol lowing

First, however, a problem of terminology must be resolved. In PL/I, the 
source of input and the destination of output is called a data set; but in GCOS, 
it is called a file. This difference is observed when it is necessary.to 
distinguish between the PL/I view of input/output, as in ”a keyed sequential 
data set", and the GCOS view, as in "an indexed sequential file". The word 
"file" is also used as a PL/I term, and in that usage, it refers to the 
combination of the file-state block and the data set; thus, the phrase "open a 
file" actually refers to the setting of a certain file-state block to control 
input/output with a certain data set.

F i1e-State B1ocks

Transmission of values between the PL/I processor and a GCOS file requires 
bookkeeping data. This data is stored in a portion of system storage called a 
f i1e-state block. When a file is open, the file-state block contains the GCOS 
file code and other information about input/output in progress. After the file 
is closed, the only information in the file-state block that is meaningful is 
that supplied by the attributes, if any, in the declaration of the file constant 
name. A file-state block cannot be accessed directly, but its values, are 
changed when input/output is performed on the data set with which it is 
assoc i a ted.
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The following values 
i nput/output:

in a file-state block are relevant to record

The status indicator. This value shows whether the file-state block 
is open or closed.

The GCOS file code.
associated with the

This value designates a
f i1e-state block.

The file name. This value 
identifier that is the name of 
the file-state block.

is a character
the constant file

The file a11 r i butes. These attributes are those 
current use of the file-state block.

GCOS file that i s

st r i ng that i s the 
value that designates

associated with the

The current record and next record indicators. These values point to 
the current position of input/output operations within the given data 
set.

In addition to the items just listed, there are other items, 
that are not of immediate interest to a programmer.

such as buffers,

File References

A file-state block is designated by a file value, and the file value is 
supplied by a file reference in a FILE option. The file reference can be a 
reference to a constant, a variable, or a function.

A file constant reference is a name that has been declared with the 
following attributes:

EXTERNAL

_INTERNAL
[constant]

The default rules provide 
EXTERNAL. The CONSTANT 
the square brackets.

that the scope attribute 
attribute can be omitted

can be omitted if it is 
in any case, as indicated by

Every file constant name must have an associated file description. This 
file description may be given when the file is opened, as described later in 
this section, under ’’The OPEN Statement”. However, PL/I also allows the 
programmer to write any portion of the file description attributes in the 
declaration of the file constant name.

Each declaration of a file constant name associates the name with its own 
file-state block in static system storage. The only exception is the 
declaration of a given name in several different blocks as EXTERNAL FILE 
CONSTANT; in this case, the declarations all refer to a single file-state block, 
as is required by the interpretation of the EXTERNAL attribute. A given file 
constant name and its associated file-state block can be used for more than one 
data set in the course of execution of a program. For example, a file-state 
block can be opened for input from a stream data set, closed, opened for 
updating a record data set, closed again, and so on.
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A file variable reference or a file function reference is similar to a 
variable reference or a function reference of any other type. However, two 
exceptional features of file variable names are:

The default scope of a FILE variable name is EXTERNAL, whereas the 
default scope for most other variable names is INTERNAL.

The attribute VARIABLE must be used explicitly for a file variable 
name because the default for a name of type FILE is CONSTANT.

RECORD INPUT/OUTPUT OPERATIONS

A summary of record input/output operations is 
terminology, shows how data sets are manipulated, and 
the record input/output facility.

given here. It introduces
gives a general view of

When a data set is opened for output, the contents of the data set are 
discarded and the data set is ready to accommodate the writing of new records. 
When a data set is opened for i nput, the contents are retained and the data set 
is made available for read i ng of its records. When a data set is opened f or 
update, the contents are retained and the data set is made available for 
reading, writing, deleting, or rewriting of records. When a sequential data set 
is opened for INPUT or UPDATE, the next record indicator is set to designate the 
first record of the data set. The contents of a data set remain accessible to 
PL/I in this way until the data set is c1osed.

A given input/output operation uses either the keyed or the sequential 
properties of a data set, but not both; and this distinction is useful in the 
description of record input/output. A keyed operation uses the key supplied by 
an input/output statement to find the record to be operated on. A sequent i aj 
operation uses the current record or next record indicators for this purpose.

When a record is created and assigned a value it is said to have been 
written. A keyed w r it e operation places the new record in its proper sequential 
position to maintain the ascending sequence of keys. An unkeyed write operation 
places the new record at the end of the data set. In either case, the value is 
copied into the record exactly as it appears in the referenced variable in PL/I 
storage.

A keyed read operation begins by locating the record that has the specified 
key and designating it as the cu r r en t r eco r d. A sequen t i a 1_ read operation 
begins by designating the next record as the current record (and thus advancing 
by one record). In either case, the value of the current record is then copied 
into the designated unit of PL/I storage. If the storage type of the record and 
the storage unit are not identical, the operation is invalid.

A keyed delete operation begins by locating the record that has the 
specified key and designating it as the current record. A sequent j_a]_ del e te 
operation begins by finding the current record. In either case, the current 
record is then discarded, with the result that there no longer is a 
current record; that is, the current record indicator is set to null.

A rewr i te operation replaces an existing record with a new record. The new 
record must be of the same size and key value as the old record.
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The based input/output operations are a relatively specialized facility. 
When based input is performed, PL/I automatically allocates storage with storage 
type identical to the record; and thus a record can be input even when its 
storage type cannot be predicted by the programmer.

A broad spectrum of errors can occur during record input/output. An 
attempt to modify a record in a data set that was opened for output is a 
programm i ng error. The input of a record whose structural attributes do not 
agree with the designated PL/I storage unit may be an i npu t-data error.
Inaccurate transmission of a value between a data set and PL/I storage is a
s ys tern error. And finally, an attempt to read beyond the end of a sequential 
data set may no t be an error a t a 11 but rather a convenient way of ending an
input loop. PL/I detects these conditions when they occur and the programmer
can provide an ON unit to respond to each condition with suitable actions.

OPENING AND CLOSI NG FI LES

When a file is 
set designator and 
file is closed, the 
file decl a ra t i on is

opened, the file-state block is marked "open11 and the data 
control parameters and indexes are set in the block. When a 
file is marked "closed" and only information provided by the 
mean i ngfu1.

A file is opened when the first input/output statement referencing the file 
is executed. The purpose of the OPEN statement is to provide the title and file 
description for the file opening. However, both these options can be omitted 
from the OPEN statement, and, in that case, a default assumption is made. If an 
OPEN statement is not given for a file, the attributes for the file opening are 
derived from the first input/output statement executed. If a file is already 
open when an OPEN statement is executed, the OPEN statement is completely 
i gnored.

The OPEN Statement

An OPEN statement gives a file 
Consider the statement

value, a title, and a file description.

OPEN FILE(SUBSCRIBER) TITLE("X1") KEYED SEQUENTIAL UPDATE;

In this statement, the file value 
the title specifies the file 
SEQUENTIAL UPDATE. The statement

is given by the file constant name SUBSCRIBER, 
code XI, and the file description is KEYED 
is interpreted as follows:

The title is used to designate a GCOS 
associated with the given file constant.

file, and that file is

The attached GCOS file is checked to see that it conforms to the file 
description. For this statement, the file must be INDEXED and must be 
available for both reading and writing.

The current record indicator and the next record indicator are set to 
the first record of the data set.

Finally, the file-state block is marked "open".
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When a data set is opened for OUTPUT, the effect is to create a new data 
set. For example, the statement

OPEN FILE(SUBSCRIBER) TlTLE("X1") KEYED SEQUENTIAL OUTPUT;

has qui te a 
the data set 
organ i za t i on

different effect than the previous example, 
designated by XI and creates a new, 

conforms to the file description.

Th i s 
empty

statement deletes
data set whose

The TITLE option can be omitted from an OPEN statement, in which case the 
file constant name is used as the title. For example, the statement

OPEN FILE(SUBSCRIBER) KEYED

i s equi valent to

OPEN FILE(SUBSCRIBER) TITLE

and the character string "SUBSCRIBER" 
constant designated by SUBSCRIBER.

DIRECT OUTPUT;

("SUBSCRIBER") KEYED DIRECT OUTPUT;

is used to attach a file to the file

FlLE DESCRIPTIONS

The fol lowing 
used to open a data

diagram gives every complete file description that can be 
set for record input/output:

rCONSECUTI VE 
^SEQUENTIAL > rINPUT > J INTERACTIVE

< KEYED SEQUENTIAL)^ OUTPUT) [ENVIRONMENTS INDEXED 
Lkeyed direct J LupdateJ ^regional

)] [record]

A given file description specifies a processing mode, the type of input/output 
operations to be performed, and the file organization. The ENVIRONMENT 
attribute can be omitted and, in this case, the file organization is determined 
at execution either by control cards or by default. The RECORD attribute can 
also be omitted. There are other rules for shortening the file description, but 
they are complicated and their use is not recommended.

During the time a data set is open under a given file description, the 
attributes in that file description determine which input/output operations are 
permitted. The attributes with which the file description begins determine 
whether the operations can be keyed, sequential, or both, as follows:

KEYED DIRECT permits keyed operations only

SEQUENTIAL permits sequential operations only

KEYED SEQUENTIAL permits both keyed and sequential operations
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The attribute with which the file description continues determines the kind of 
statement that can be used to perform input/output, as follows:

OUTPUT permits the use of a WRITE or LOCATE statement only

INPUT permits the use of a READ statement only

UPDATE permits the use of a WRITE, READ, DELETE, or REWRITE
statement only; however, a WRITE statement is permitted 
only if the file description includes the KEYED attribute

Observe that UPDATE permits almost any input/output statement; however, it does 
not permit the use of a LOCATE statement (which is rarely used in any case) or 
the use of a WRITE statement for a data set that is opened as unkeyed 
SEQUENTIAL.

The ENVIRONMENT attribute specifies the file organization. The file 
organization determines the method for storing and retrieving records. 
SEQUENTIAL INPUT and OUTPUT can be performed on any file, but SEQUENTIAL UPDATE 
cannot be performed on a file with INTERACTIVE organization. KEYED INPUT and 
UPDATE can be performed on INDEXED or REGIONAL files, but KEYED OUTPUT can be 
performed only on files with REGIONAL organization. A detailed description of 
the different types of file organization is given in the GCOS PL/I User’s Guide.

The CLOSE Statement

The close statement has a simple form, as indicated by the following 
examp 1e:

CLOSE FILECSUBSCRIBER);

This statement marks the file-state block SUBSCRIBER closed. In addition, it 
clears and frees any buffers which have been allocated and set by previous based 
input/output operations. These buffers are discussed under "Based 
Input/Output", later in this section.

KEYED INPUT/OUTPUT OPERATIONS

When an input/output statement contains a KEY or a KEYFROM option, it 
performs keyed input/output. The file on which such a statement operates can 
usually be either DIRECT or SEQUENTIAL, but it must be KEYED in any case.

The Keyed WRITE Statement

Consider the statement:

WRITE FILE(EMPLOYEE) KEYFROMCSSNO) FR0M(ITEM(3));

The file EMPLOYEE must be a KEYED OUTPUT or KEYED UPDATE file. The statement 
attempts to create a new record in the file EMPLOYEE under the key given by the 
value of the character-string variable named SSNO. If the file is KEYED 
SEQUENTIAL OUTPUT, the key given by SSNO must be greater than any key already in 
the file (so the record goes at the end of the file); otherwise, the KEY 
condition occurs. The created record becomes the current record and its value 
is the current value of ITEM(3). However, the operation fails and the 
KEY(EMPLOY EE) condition occurs if there is already a record in EMPLOYEE under 
the key given by SSNO.
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The Keyed REAP Statement

The READ statement with the KEY option is used for keyed input from a file. 
Consider the statement:

READ FlLE(EMPLOYEE) KEY(SSNO) INTOCREC.MA IN);

The file EMPLOYEE must be a KEYED INPUT or KEYED UPDATE file. The statement 
attempts to find a record in the file EMPLOYEE that has the key given by SSNO. 
If such a record is found, it becomes the current record and is read into the 
PL/I storage designated by REC.MAIN.

The reference in the INTO option must not be a VARYING string variable 
reference. The operation fails and the KEY(EMPLOYEE) condition occurs if there 
is no record in EMPLOYEE under the key given by SSNO.

b w
Input and output values must be matched exactly. Suppose the following 

statements are executed in sequence:

WRITE FlLE(EMPLOYEE) KEYFROMCSSNO) FROM(ITEM(3));

READ FlLE(EMPLOYEE) KEY(SSNO) INTO(REC.MA IN);

If ITEM(3) and REC.MAIN have exactly the same 
statements are equivalent to:

s t ructu ra1 attr i butes, these

WRITE FlLE(EMPLOYEE) KEYFROMCSSNO) FROM(ITEM(3));

REC.MAIN = ITEM(3);

The equivalence just given breaks down when the structural attributes of ITEMC3) 
and REC.MAIN are not exactly the same. When data types do not match in an 
input/output statement, PL/I does not convert the value, and when aggregate 
types do not match PL/I does not attempt to promote. Instead, any disagreement 
of structural attributes is an error.

The Keyed DELETE Statement

The DELETE statement with the KEY option is used for the keyed deletion of 
an existing record from a file. Consider the statement:

DELETE FlLE(EMPLOYEE) KEY(SSNO);

The file EMPLOYEE must be a KEYED UPDATE file. This statement attempts to 
delete a record from the file EMPLOYEE under the key given by SSNO. The key is 
deleted from the file as well as the record, so the key is unused in this file 
after the delete operation. The KEY(EMPLOYEE) condition occurs if there is no 
record in EMPLOYEE with the key given by SSNO.
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The Keyed REWRITE Statement

The REWRITE statement with the KEY option is used to write a new version of 
an existing record in a keyed file. Consider the statement:

REWRITE FILE(EMPLOYEE) KEY(SSNO) FROMCCORRECTI ON);

The file must be a KEYED UPDATE file. This statement attempts to output a 
record to the file EMPLOYEE and enter it under the key given by SSNO. The new 
value of the record is taken from the variable CORRECTION, and the old value of 
the record is destroyed. The KEY(EMPLOYEE) condition occurs if there is no 
record in EMPLOYEE under the key given by SSNO.

Since the WRITE statement uses the KEYFROM option to specify the key, the 
programmer may be tempted to use a KEYFROM option in the REWRITE statement; but 
this is a syntactic error. In PL/I, the KEY option is used when a statement 
attempts to find a given key in a file (as in the READ, DELETE, and REWRITE 
statements), and the KEYFROM option is used when a statement attempts to 
i nt reduce a given key into the file (as in the WRITE statement).

An Example of Keyed Input/Output

Suppose a simple list of subscribers to a monthly magazine is stored as a 
keyed sequential file. Each record gives the name and address of a subscriber 
and the date of expiration of his subscription. The key for each record is a 
12-character string which is made up of the zip code and other identifying 
information. The problem is to extend the date of expiration of subscribers as 
their subscriptions are renewed. The program is as follows:

RENEW: PROC;
DCL SYSIN FILE;
DCL GIVEN FILE;
DCL SKEY CHAR(12) VAR;
DCL 01 SUBS,

02 NAME CHAR(30) VAR,
02 ADDRESS CHAR(60) VAR,
02 EXPIRY,

03 MONTH DEC(2),
03 YEAR DEC(2);

OPEN FILE(GIVEN) DIRECT UPDATE;
DO WHILE (”1"B);

GET LIST(SKEY);
IF SKEY = "END”

THEN DO; CLOSE FILE(GIVEN); RETURN; END;
READ FlLE(GIVEN) KEY(SKEY) INTO(SUBS);
YEAR = YEAR+1;
REWRITE FlLE(GIVEN) KEY(SKEY) FROM(SUBS);
END;

END;

An example of input for the program is

"94305MARSA82" 
"02139STEIS95”
"20742MARTB61"
’’END”
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This procedure reads keys from the input stream SYSIN and adds 1 to the year of 
expiration for the cor responding record. The fact that the subscription file is 
declared to be DIRECT does not imply that the data set is not sequential; it 
only means that th i s use of the data set will not depend on whether or not it is 
sequential. Indeed, a later example in this section uses this same file for 
sequential input/output.

SEQUENTIAL INPUT/QUTPUT OPERATIONS

When an input/output statement does not contain a KEY or a KEYFROM option, 
it performs sequent i a 1 i nput/output. The file on which such a statement 
operates must have the SEQUENTIAL attribute.

The Sequential WRITE Statement

Consider the statement:

WRITE FILE(SUBSCRIBER) FROM(CUST);

The file SUBSCRIBER must be an unkeyed SEQUENTIAL OUTPUT file. The statement 
creates a new record at the end of the file, and the current value of CUST is 
assigned to the record.

The Sequential REAP Statement

The READ statement without the KEY option is used for sequential input from 
a file. Consider the statements:

READ FILE(SUBSCRIBER) INTO(CUST);

READ FlLE(EMPLOYEE) KEYTO(SSNO) INTO(CUST);

The file SUBSCRIBER must be a SEQUENTIAL INPUT or SEQUENTIAL UPDATE file (keyed 
or not), and the file EMPLOYEE must be a KEYED SEQUENTIAL INPUT or KEYED 
SEQUENTIAL UPDATE file. The indicator associated with the file is moved to the 
next record; that is, the current record indicator in the file-state block is 
given the value of the next record indicator. Then the value of the new current 
record is assigned to CUST in PL/I storage. The KEYTO(SSNO) option causes the 
key associated with the current record to be assigned to SSNO in PL/I storage.

The reference in 
reference.

the INTO option must not be a VARYING string variable
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The READ statement can also be used to skip over records 
file. Consider the statement:

i n a sequent i a 1

READ FILE(SUBSCRIBER) IGN0RE(3);

The file SUBSCRIBER must be a SEQUENTIAL INPUT or SEQUENTIAL UPDATE file (keyed 
or not). If the current record indicator designates the j_th record of the file, 
then IGN0REC3) moves the indicator to the (i+3)th record. If the file has just 
been opened, the current record indicator is set to null; but, for this 
calculation, it can be thought of as designating the zeroth record. If the end 
of the file is reached before the operation is complete, the current record 
indicator is set to the null record and the ENDFILE(SUBSCRIBER) condition is 
signalled. The argument of the IGNORE option must be greater than zero.

The Sequential DELETE Statement

The DELETE statement without the KEY option is used for deletion of the 
current record of the file. Consider the statement:

DELETE FILE(SUBSCRIBER);

The file SUBSCRIBER must be a SEQUENTIAL UPDATE file (keyed or not). The 
statement causes the current record to be deleted; that is, it sets the 
current record indicator to null. Since the next record indicator is set to the 
following record, the statement does not cause PL/I to "lose its place" in the 
file; but the next input/output operation on the file, if any, must be a keyed 
operation or a sequential read so that a new record is selected.

The Sequential REWRITE Statement

The REWRITE statement without the KEY option is used to write a new version 
of an existing record in a sequential file. Consider the statement:

REWRITE FlLE(SUBSCRIBER) FR0M(RENEWAL);

The file must be SEQUENTIAL UPDATE. The statement replaces the contents of the 
current record with the value of RENEWAL in PL/I storage; and the old value of 
the record is destroyed.
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An Example of Sequential Input/Output

Once again a list of subscribers to a monthly magazine is stored as a keyed 
sequential file. The problem is to read through the file sequentially, checking 
each record in turn to see if the subscription has run out. Those records that 
represent expired subscriptions are copied into another keyed sequential file. 
The program is as follows:

EXPTEST: PROC;
DCL GlVEN FlLE;
DCL TARDY FlLE;
DCL SKEY CHAR(12);
DCL 01 SUBS,

02 NAME CHAR(30),
02 ADDRESS CHAR(60),
02 EXPIRY,

03 MONTH DEC(2), 
03 YEAR DEC(2);

OPEN FILE(GIVEN) KEYED SEQUENTIAL INPUT;
OPEN FILE(TARDY) KEYED SEQUENTIAL OUTPUT;
ON ENDFILE(GIVEN) GOTO EXIT;
DO WHILE(”1”B);

READ FlLE(GIVEN) KEYTO(SKEY) INTO(SUBS);
IF 12*YEAR+MONTH < 12*74+3
THEN uVRITE FILE(TARDY) KEYFROMC SKEY) FROM(SUBS);
END;

EXIT: CLOSE FlLE(TARDY);
CLOSE Fl LE(GI VEN);
END;

The program tests for subscriptions that expired before March 74. Its most 
interesting point, however, is the use of KEYED SEQUENTIAL output. These 
attributes require that TARDY be written in order of.ascending keys; ,and this 
requirement is satisfied, since the program is copying from a file, GIVEN, that 
is KEYED SEQUENTIAL and necessarily satisfies the requirement. The program 
wo uld still be valid if TARDY were declared KEYcD DIRECT, but the useful fam 
that the records will be written in order of ascending keys would not be made 
explicit and PL/I might not perform the output as efficiently as possible. 
Therefore the declaration KEYED SEQUENTIAL is best.

BASED INPUT/OUTPUT OPERATIONS

Based input/output is a rather advanced and difficult technique of PL/I 
programming. Fortunately, based ou tpu t is not important in Honeywell PL/I and 
need be given no more than passing mention at the end of this discussion. 
However, based input is useful, especially in commercial programming.

Cons i der a
ar i ses:

programming application in which the following vicious circle

The records of a given input file are in several different structural 
forms, and therefore a particular record cannot be read into PL/I storage 
until the storage type of its values have been determined. However, the 
records occur in an unpredictable order, and the only indicationof the 
storage type of a particular record is a code that is contained within the 
record. In short, the record cannot be read until its form is known and 
its form cannot be known until the record has been read.
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The based. jjiRut statement 
system storage and thus using 
user.

breaks this circle by reading a record into 
a special technique not otherwise available to the

Based Input

A based input statement can be obtained by writing a READ statement with a 
SET option instead of an INTO option. Three forms are possible, as the 
following examples show:

READ FILE(LOG) KEY(ITEMNO) SET(PTR);

READ FILE(LOG) SET(PTR);

READ FILE(LOG) KE YTO(ITEMNO) SET(PTR);

The argument of the SET option must be a target for a POINTER value. In each of 
these statements, the record is located just as it would be for the statement 
with an INTO option; the first statement is a keyed operation, the second and 
third are sequential operations. When the record has been located, PL/I 
allocates enough storage from system storage to hold the value of the record, 
copies the record into the storage, and sets PTR to point to the beginning of 
the allocated storage.

It is useful to think of the input process as follows: PL/I examines the 
record, allocates storage with exactly the same structural attributes as the 
record, and then reads the record into that storage. This could not be done 
with an ordinary READ statement (with an INTO option); there is no way that a 
program can examine a record before reading it in, and an ordinary READ 
statement must specify the attributes of the target before the input is 
performed.

Once the record has been input by means of a based input statement, it is 
interpreted by using the pointer value to associate a based variable with the 
value of the record. Many techniques for the use of based variables can be 
used; but the most important ones are given in the following examples.

AN EXAMPLE OF BASED INPUT

In the first example, a file that contains the daily transactions of a 
repair shop must be read. There are different kinds of transactions, and 
therefore different kinds of structures are required to represent them. The 
transactions covered are as follows;

Code Pu rpose

1 Order a replacement part, giving the part number and the source of 
supp1y.

2 Bill a customer, giving name, address, and amount due.

3 Record an internal charge, giving a cost center and a cost.

A program is required to read through the file accumulating the credits. A Code 
1 transaction is ignored, but each Code 2 or Code 3 transaction contributes its 
AMOUNT__DUE or COST to the accumulated credits. When the file has been 
completely read, the accumulated total is printed.
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If based input were not available, the file could be designed with two 
records for each transaction. The first record of any pair would give the 
transaction code and the second would be a structure describing the transaction. 
The program would read the code, choose the appropriate target for the second 
record, and then read the second record. The disadvantage of this approach is 
that it uses twice as many records as necessary, and in many cases, would nearly 
double the cost of both the storage and the processing.

Since based input i s available, the file can be written with one record for 
each transaction. Each record is a structure whose first member is the 
transaction code and whose remaining members are appropriate to the kind of 
transaction described. When a record has been read, the code is examined 
(without looking at the rest of the record) and is used to select a statement 
that will use an appropriate based variable to interpret the value of the 
record. The program is as follows:

SUM: PROC;
DCL TOTAL PIC”$$$$$$.V99";
DCL TRANS FILE;
DCL SYSPRINT FILE;
DCL P POINTER;
DCL 01 ORDER BASED(P), 

02 CODE DEC(l), 
02 PART-NUMBER CHARC12), 
02 SUPPLIER DEC(3);

DCL 01 BILL BASED(P), 
02 CODE DEC(l), 
02 CUSTOMER, 

03 NAME CHARC20) VAR, 
03 ADDRESS CHAR(40) VAR, 

02 AMOUNT_DUE PIC"$$$$.V99";
DCL 01 CHARGE BASED(P), 

02 CODE DEC(l), 
02 COST-CENTER CHARC3), 
02 COST PIC"$$$$.V99"; 

ON ENDFILE(TRANS) GOTO EXIT;
OPEN FILE(TRANS) SEQUENTIAL INPUT; 
TOTAL = 0;

LOOP: READ FILE(TRANS) SET(P);
GOTO L(ORDER.CODE);

L(l): GOTO LOOP;
L(2): TOTAL = TOTAL + AMOUNT-DUE;

GOTO LOOP;
L(3): TOTAL = TOTAL + COST;

GOTO LOOP;
EXIT: PUT SKIP LISTCTOTAL BILLING: ”, TOTAL);

CLOSE FILE(TRANS);
END;

This program is easy to read, 
of based variables to the input 
errors may not be detected.

but it is not so easy to write. The application 
value must be programmed carefully because

The declarations of the structures ORDER, BILL, AND CHARGE are as might be 
expected from the definition of the problem. The association of the pointer P 
with each of the three structures saves writing later. For example, ORDER.CODE 
means P->ORDER.CODE because ORDER is declared BASEDCP).
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The based input statement at LOOP reads the value of a record into system 
storage and sets P to the beginning of the value. The important statement is:

GOTO L(ORDER.CODE);

This statement evaluates the transaction code by overlaying the structure ORDER 
on the input value and then obtaining the value of ORDER.CODE. The value of 
ORDER.CODE must be 1, 2, or 3 and the appropriate transfer to L(l)z L(2)z or 
L( 3) is performed.

Once the code has been examined, the correct choice for a based variable 
can be made. For example, at L(2)z it is known that the record represents a 
bill for a customer, and therefore reference can be made to AMOUNT_DUE. The 
fully-qualified equivalent of this reference is P ->BILL.AMOUNT_DUE, and it 
means: treat the value pointed to by P as if it were like the structure BILL 
and get the value of AMOUNT_DUE from that structure.

ANOTHER EXAMPLE OF BASED INPUT

In this example, a program generates a two-dimensional array and writes it 
out as a one-record file. Later, another program reads the array and processes 
it. It is assumed that the programs are used repeatedly in this sequence, and 
that the array may have different extents from one application to the next; 
therefore, the extents cannot be given as constants. For these programs, 
se1f-descr i b i ng structures are used; that is, each array is incorporated in a 
structure that contains integers that represent the bounds of the array. The 
seif-describi ng structure is designed in a special way so that not only the 
programmer knows where the extents are stored, but the PL/I processor also 
knows. The program that outputs the array is, in part, as follows:

BUILD: PROC;
DCL (M,N) FIXED;
DCL 01 S BASED(P),

02 EXTENTS,
03 El FlXED,
03 E2 FIXED,

02 A(M REFER(E1):N REFER(E2));
DCL P PTR;
DCL X FILE;

... (SET M AND N TO THE DESIRED VALUES) ...

ALLOCATE S;

... (SET THE M*N VALUES OF THE ARRAY) ...

OPEN FILE(X) SEQUENTIAL OUTPUT;
WRITE FlLE(X) FROM(S);
CLOSE FILE(X);
END;
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The interesting action in this program is the ALLOCATE statement. This 
statement allocates the structure S in system storage using the current values 
of M and N as the bounds for the array. At the same time, the "allocate” 
statement assigns the bounds to El and E2, so that an explicit record of the 
bounds of the array is made. These are useful when the array is read in by the 
second program that follows:

USE: PROC;
DCL (M, N) FIXED;
DCL P POINTER;
DCL 01 S BASED(P), 

02 EXTENTS, 
03 El FIXED, 
03 E2 FIXED,

02 ACM REFER(El): N REFERCE2));
DCL X FILE;
OPEN FILE(X) SEQUENTIAL INPUT;
READ FILE(X) SET(X);
CLOSE FILE(X);

... (MAKE USE OF A)

END;

Because the array is se1f-describing and uses REFER options in the proper way, 
PL/I "understands” that the extents of the array are given by El and E2. 
Incidentally, the variables M and N are not used at all in USE; they are given 
to cover the allocation of the array A, but the array is not allocated in this 
program. PL/I allocates storage according to the requirements of the i nput 
record, not the declaration of S; but then a reference to A is interpreted a_s_ _rf 
that storage had been allocated by the statement ALLOCATE S; .

Based Output

An ordinary output statement transfers a given value to a portion of system 
storage called an output buffer; then the actual output is performed under 
control of the operating system from that output buffer. There are certain 
techniques that permit a programmer to gain access to the output buffer, and 
these are described in the following paragraphs. These techniques should be 
used only when the need is clearly evident.

THE OMISSION OF THE FROM OPTION

It is possible to perform output directly from the input buffer; that is, 
under certain circumstances, the FROM option can be omitted from a REWRITE 
statement, as follows:

REWRITE FlLE(EMPLOYEE) KEY(SSNO);

or

REWRITE FlLECSUBSCRIBER);
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Such a statement is allowed only 
SUBSCRIBER, respectively, was a based 
statement takes its output value from 
by the preceding READ statement, 
record into a buffer, modify it in th 
same buffer.

if the last input operation on EMPLOYEE or 
READ operation. In that case, the REWRITE 
the input buffer associated with the file 
Thus it is possible to read the value of a 
t buffer, and write the value out from the

THE LOCATE STATEMENT

A second facility for programmer control of buffers is the LOCATE 
statement. The LOCATE statement is related to the WRITE statement as the based 
READ statement is related to an ordinary READ. Consider the statement:

LOCATE BUF SET(PTR) FILE(EMPLOYEE) KEYFROMCSSNO);

The BUF must be a BASED variable, and if it is declared BASED(PTR) then the SET 
option can be omitted. If the file is not keyed, the KEYFROM option must be 
omitted. The effect of this locate statement can be described in terms of 
replacement by two other statements. The LOCATE statement itself can be 
replaced by a statement to allocate BUF, as follows:

ALLOCATE BUF SET(PTR);

Then, at a later point in the program, just before the next output operation on 
the file EMPLOYEE or just before the closing of the file EMPLOYEE, the actions 
implied by the following statement are carried out:

WRITE FlLE(EMPLOYEE) KEYFROMCSSNO) FROM(BUF);

Thus the LOCATE statement sets up an 
buffer are not wr i tten out until the

output buffer but the 
last possible moment.

contents of the

CONDITIONS FOR RECORD INPUT/OUTPUT

In this discussion, the conditions that occur during record input/output 
are described. They are:

ENDFILECref)
KEYC ref)
RECORDC ref)
TRANSMITC ref)
UNDEFINEDFILE(ref )

where ref is a reference that yields a file 
use of conditions are given earlier, in 
only a summary is given here.

value. The general rules for the 
the section on "Condition Handling";

As indicated above, each condition is defined separately for each file 
constant, and thus for each file-state block, whether it is open or not. The 
identifier ENDFILE is not a valid condition; but if SUBSCRIBER is declared FILE, 
then ENDFILECSUBSCRIBER) is valid.

As an example of condition handling, consider the statement:

ON ENDFILECSUBSCRIBER) GOTO EXIT;
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When this statement is executed, it establi shes the ON unit GOTO EXIT; for the 
condition ENDFILE(SUBSCRIBER). If the ENDFILE(SUBSCRIBER) condition is 
signal led, the ON unit itself is executed. When the block that contains the ON 
statement is deactivated, the ON unit is reverted and no longer responds to a 
s i gna1.

When a condition occurs, PL/1 takes either of two actions, as follows:

If an ON unit is established for the condition, then that ON unit is 
executed. If the execution of the ON unit runs to completion, control 
goes back to the point in the program at which the interruption 
occurred, and execution is resumed in a reasonable way (depending on 
the particular needs of the condition).

If no ON unit is established for the condition, the default ON unit is 
executed. The default ON unit for each condition is described 
earlier, in the section on "Condition Handling".

PL/I saves certain values before signalling a condition. For each kind of 
value saved, there is a stack and a built-in funct ion♦ Just before the 
condition is signalled, the value is placed on the top of the stack, and after 
completion of the established ON unit, it is removed. The built-in function is 
used to access the value during the execution of the ON unit.

When a record input/output operation causes a condition to be signalled, 
the following values are saved in the manner just described. First, the 
file name, expressed as a character-string value, is saved in the stack 
associated with the ONFILE() built-in function. Second, if the file being 
operated on has been opened with the attribute KEYED, then the current key is 
saved in the stack associated with the ONKEY() built-in function.

The ENDFILE CONDITION

Suppose the file SUBSCRIBER is positioned so that its current record is the 
last record in the file, and suppose a sequential READ statement is executed. 
Since there is no next record, PL/I signals ENDFILE(SUBSCR I BER). If an ON unit 
is established for ENDFILE(SUBSCRIBER), then it is executed; and if the ON unit 
runs to completion, execution of the program resumes with the statement after 
the READ statement that caused the condition to occur.

Sometimes the number of records in a file is known in advance, and that 
number can be used to control the loop that reads the records. In such a case, 
an ENDFILE condition indicates an error in the preparation of the input file. 
The programmer may choose to provide an ON unit for recovery from such an error 
or he may decide to accept the diagnostic message and program abort that the 
system supplies by default.
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An occurrence of an end-of-file condition is not necessarily an error; 
indeed, it is an excellent way to terminate a loop that processes the records of 
a file. Several of the example programs given in this section use a statement 
such as the following:

ON ENDFILE(SUBSCRIBER) GOTO EXIT;

to exit from a loop that is reading the records of an input file. Such 
programming is especially elegant. A programmer writes a loop that would go on 
reading records forever if there were no end to the file. Then quite 
separately, the programmer writes an ON statement that determines the action to 
be taken when the end of the file is reached. This separation of activities 
makes the program easier to write and easier to understand.

The KEY Cond i t i on

The KEY(SUBSCRIBER) condition occurs when a wrong assumption is made about 
the keys in the file SUBSCRIBER. That is, it occurs when a keyed WRITE 
statement has a KEYFROM option which supplies a key which is already in the 
file; and it occurs when a keyed READ, DELETE, or REWRITE statement has a KEY 
option that supplies a key that is not already in the file. If an ON unit is 
established for the condition KEY(SUBSCRI BER) it is executed; and if it runs to 
completion, then execution continues with the statement after the input/output 
statement in which the condition occurred.

This condition has an important role in signalling errors in the use of a 
keyed file. It can also be used to support a legitimate inquiry about the use 
of a key in a file. For example, suppose a file of employees is keyed by social 
security numbers. Then a given number can be checked to see if its owner is an 
employee. First, the statement

ON KEY(EMPLOYEE) EMP = "0"B;

is executed. Then the following statements are used to branch according to 
whether or not the number was in the file:

EMP = ”1"B;
READ FlLE(EMPLOYEE) KEY(GI VEN_SSNO) INTO(INFO);
IF EMP THEN GOTO CONTINUE; ELSE GOTO NEXT;
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The RECORD Condition

The RECORDCSUBSCRIBER) condition occurs when the value of a record from the 
file SUBSCRIBER does not fit into the storage provided by the INTO option of a 
READ statement. A value fits if the number of bits it requires is exactly the 
number of machine-1 eve 1 bits allocated in storage. This condition is 
implementation dependent; however, the following assertion is true for any 
implementation of PL/I :

If the RECORD condition occurs, then the input value does not have the same 
storage type as the target given by the INTO option of the READ statement.

Such a condition indicates an error in the program or the input file. After an 
established ON unit is executed, PL/I completes its execution of the READ 
statement by assigning the value of the record to the target, truncating it or 
padding it with zero-valued bits to make it fit the target.

Although it is an error to input a value that does not have the same 
storage type as the target, this condition only occurs when the number of bytes 
required by the value of the record differs from the number of bytes in the 
target. Thus, certain errors go undetected.

The TRANSMIT Condition

The TRANSMIT(SUBSCRIBER) condition occurs when data cannot be reliably 
transmitted between the file SUBSCRIBER and the PL/I storage referenced in the 
statement that attempted the input or output. After an established ON unit is 
executed, the program resumes at the point following the input/output statement 
that caused the condition; but the value of the data transmitted by the 
statement is undefined.

The condition is usually caused by factors beyond the programmer’s control, 
such as hardware failure, so the recovery procedure usually cannot be initiated 
until the hardware problem is resolved.

The UNDER INEDFILE Condition

The UNDER INEDFILE(SUBSCRIBER) condition occurs when an OPEN statement 
attempts unsuccessfully to open the file SUBSCRIBER. The condition can occur 
when, for example, an attempt is made to open an unkeyed data set for KEYED 
input or output, or when, for another example, the TITLE option specifies an 
illegal attachment. After an established ON unit is executed, the program 
resumes at the point following the OPEN clause. This point may be the next of a 
series of OPEN clauses in an OPEN statement or the statement after the OPEN 
statement.
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APPENDIX A

GUIDE TO PL/I STATEMENTS

A brief description of each of the PL/I statements is given in this 
appendix. The emphasis is on the syntax of the statements rather than on the 
interpretation. The entries are arranged in alphabetical order according to the 
initial keyword of each statement.

PRELIMINARY REMARKS

The statement descriptions given in this appendix have three parts: the 
syntax diagram, the supplementary rules, and the brief interpretation. .The 
syntax d i ag ram is enclosed in a box and uses the special notation described 
later. In the description of the SIGNAL statement that appears in this 
appendix, the following syntax diagram is given:

SIGNAL cd

This diagram defines the SIGNAL statement as 
a cd, followed by a ’; . The suppl emen tary 
statement that is not given in the diagram, 
supplementary rules are just the clause:

’’the identifier SIGNAL, followed by 
rules provide information about the

For the SIGNAL statement, the

where cd must be a condition designator

This clause defines the syntactic variable, cd., so that the diagram can now be 
interpreted as ’’the identifier SIGNAL, followed by a condition designator, 
followed by a The brief i nterpretat i on discusses the action taken by the 
statement and refers the reader to the appropriate section(s) of this manual for 
a complete definition. For the SIGNAL statement, the brief interpretation is:

The statement signals the condition designated by cd.. See the section 
on ’’Condition Handling".

The Syntax Notation

The following paragraphs are a complete description of the notation that is 
used in the syntax diagrams. Many examples are given.

A-l DE05



BASIC CONSTRUCTS

In a syntax diagram, an underlined identifier is a syntax variable; it 
represents a set of constructs that is defined somewhere else, either in another 
diagram or in the text. Certain other parts of a diagram, described in the 
following paragraphs, are used for special purposes, such as indicating a list 
of items. All the remaining characters in the syntax diagram are 1 i.teraL 
cons t ructs. Thus in the diagram already given for the SIGNAL statement, the 
underlined identifier * cd ’ is a syntax variable and SIGNAL and are taken 
literally.

The syntax variables and literal constructs of a diagram are separated from 
one another by blanks. According to the ’’Separation Rules” given in the section 
on ’’Program Syntax”, these blanks can be replaced by newlines, tabs, and 
comments; and, in some places, blanks can be inserted or omitted. Thus, for 
example, a SIGNAL statement can be written as:

SIGNAL
FIXEDOVERFLOW;

This statement was obtained by replacing the first blank as a newline and 
omitting the blank between the condition designator and the semicolon.

LIST OF ITEMS

In a syntax diagram, the characters ’, ...’ are not interpreted literally; 
instead, they indicate a possibly vacuous list of items separated from one 
another by commas. Similarly, the characters ’...’ indicate a list of items 
separated by blanks. The items in the list are specified by the construct that 
precedes the ’, ...’ or ’...’.

As an example, consider the syntax diagram for the assignment statement, 
which is:

target, ... = e ;

This rule is a short way of specifying one of the following forms:

JLarget = e ;

target , tajL^et = e ;

target/ ta_r_get/ target = e ;

(etc.)
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This notation does not imply that the targets must be identical; for example, 
valid assignment statement is:

a

S3(2), X,ALPHA = M;

This statement has three different targets.

As a second example, consider the syntax 
which is:

FREE f refl INC ref2)J , ... ;

Here, each item in the list has the form:

diagram for the FREE statement,

IN(ref2)

This example shows that the construct that precedes the ’, can be a
sequence of constructs enclosed in curly braces.

CHOICE OF ITEMS

I n a 
indicates a 
diagram for

syntax diagram, a 
choice among those 
the GOTO statement:

vertical list of items enclosed in
items. As an example, consider

curly 
the

braces
syntax

This rule is a short way of specifying the following forms:

GOTO ref ;

GO TO ref ;

OPTIONAL ITEMS

In a syntax diagram, a construct enclosed in square brackets 
As an example, consider the syntax diagram for the IF statement:

i s opt i onal.

IF e THEN exl ELSE ex2

This rule is a short way of specifying the following forms:

1 F e THEN exl ELSE ex2

I F e THEN exl

Not all optional features of statements are marked as such in the syntax 
diagrams; too many brackets obscure the syntax diagram. However, a construct 
that is optional is always mentioned in the supplementary rules that follow a 
syntax diagram. This treatment is accorded primarily to the PL/I constructs 
called opt i ons.
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RECURSIVE DIAGRAMS

Occasionally, a diagram that defines a certain syntax variable also 
contains that syntax variable. As an example, consider the following definition 
for deciarat i on:

(declaration
attribute ...

In this diagram, the choice of the
recursion and produces something like:

first alternative in the braces avoids

ALPHA FIXED EXTERNAL

However, the choice of the 
declarations; for example:

second alternative introduces a parenthesized list of

(SYS IN,SYSPRI NT) FILE

or even:

(X, (Y,Z) FLOAT, BETA) CONTROLLED

The Parts of a Statement

A statement is composed of a pref i x, followed by statement body, followed 
by a semicolon. A prefix is composed of a sequence of any number (possibly 
zero) of cond i t i on prefixes followed by a sequence of any number (possibly zero) 
of label prefixes. For some statements (DECLARE and DEFAULT), a condition 
prefix must not be used. For some statements (PROCEDURE, ENTRY, and FORMAT) a 
label prefix must be used.

A cond i t i on pref i x has the form:

(Id, ... )

where each i d is an identifier indicating the enabling or disabling of a 
condition. A label pref i x has the form: 

where i d is an identifier and In t is an optionally-signed decimal integer.

The parts of a statement are described fully in the section on "Program 
Syntax". The role of the condition prefix is defined in the section on 
"Condition Handling". The role of the label prefix is defined in the section on 
"Program Flow".
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Specific Conventions

Every reference or expression mentioned in the statement descriptions must 
yield a scalar value unless an exception is explicitly noted.

The following syntactic variables are used throughout this appendix with 
the given meaning:

e./ el/ e2./ and so onz represents an arbitrary expression

ref, refl, r e f 2, and so on, represents an arbitrary reference to a 
constant, variable, or function

i d represents an arbitrary identifier

ta rg e t represents an arbitrary variable reference or pseudo-va r i ab 1 e

Other syntactic variables are used for specific statements, and their meanings 
are given in the supplementary rules that follow the diagram in which they are 
used.

ALLOCATE

where i d must be a CONTROLLED or BASED variable name, refl must yield an area 
variable, and ref2 must yield a locator variable. The options are selected as 
fo11ows:

If i d is CONTROLLED, then both options must be omitted.

Suppose i d is BASED. If i d is declared BASED(<1), then the SET option 
can be omitted and SET(ci) is assumed; otherwise, the SET option must 
be g i ven.

if i d is a BASED variable intended for allocation in system storage 
rather than in an area variable, then the IN option must be omitted.

Suppose i d is a BASED variable intended for allocation in an area. If 
ref2 is declared OFFSETCa.), then the IN option can be omitted and 
IN(a.) is assumed; otherwise, the IN option must be given.

The options can be given in any order, but the order shown above is recommended.

The statement allocates storage. If i d is CONTROLLED, storage is allocated 
in system storage and is stacked on any previous allocations of i d. If i d is 
BASED, storage is allocated either in system storage or the area given by the IN 
option; then the locator variable given in the SET option is set to designate 
the allocated storage.
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ASSIGN

target ... = e ;

The expression e is evaluated and its value is assigned to the storage 
specified by each target. The expression e can be any kind of PL/1 expression, 
scalar or aggregate. A target can be a variable reference or a pseudo-variab1e. 
Each target must designate a storage unit that can accommodate the value of e 
after the value has been subjected to an allowed conversion of its storage type. 
See the section on "Value Assignment".

BEGIN

BEGIN ;

The statement is the first statement of a BEG-LN. bLoc k. A 
two purposes: it groups together the statements contained in the 
delimits the scope of the names declared in the block. See 
"Program Syntax" and "Program Flow".

BEGIN block has 
block and i t 

the sections on

CALL ref( e., ... ) ;

where, if there are no arguments, the parenthesized argument list, ’( e, ... )’, 
can be omitted or written as ’()’.

The statement invokes a procedure. The ref is evaluated to give an entry 
value. A procedure block is entered at the PROCEDURE statement or ENTRY 
statement designated by the value of ref and the procedure is executed for the 
given argument list. The argument list must contain one argument for each 
parameter in the statement at which the procedure is entered. The procedure 
must not return a value for an invocation by a CALL statement. See the section 
on "Procedure Invocation".
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CLOSE

The 
and the 
sect ions

statement closes one or more files.
cor responding file is closed if 

on "Stream Input/Output" and "Record

Each ref specifies a file 
it is not already closed. 
I nput/Output".

value, 
See the

DECLARE

and where 1 eve 1 is an unsigned decimal integer. The statement must not be 
preceded by a condition prefix.

The statement declares one or more identifiers. An identifier is declared 
by associating with it a set of attributes and, in the case of a component of a 
structure, a level number. See the section on "Declarations".
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DEFAULT

The DEFAULT statement allows a programmer to extend and modify the defaults 
that are built into PL/I for the declaration of identifiers; in addition, it 
allows the programmer to specify declarations that he wishes to have flagged as 
errors even though they are otherwise valid in PL/I. The DEFAULT statement,is 
not recommended for use in an individual program; rather, its application lies 
in the establishment and maintenance of special standards for all programs 
written for a given project or at a given computing installation. The DEFAULT 
statement is not described here, but a full description appears in the PL/I 
Language Manua1.

DELETE

DELETE FlLE(ref) KEY(e) ;

The options are selected as follows:

• The KEY option must be omitted if the file is not KEYED.

• The KEY option cannot be omitted if the file is DIRECT.

The options can be given in any order, but the order shown above is recommended.

The statement deletes a record from a data set. The record is specified by 
the file value given by the FILE option and the character-string value given by 
the KEY option (if present). See the section on "Record Input/Output".
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where

The options and clauses are selected as follows:

The BY e7 clause can be omitted.

The option WH1LE(e3) can be omitted, 
assumed.

In that case, WHILE("1"B) i s

The TO e8 clause can be omitted, 
omitted. In this case, the end 
not performed.

In this case, BY 1 is assumed.

provided that the BY clause is not 
test associated with the TO clause is

The BY clause and the TO clause can be interchanged.

The first of the three forms, ’DO;’, 
non i terat i ve group. The statements contained 
once.

i s the first 
in the group are

statement of a 
executed exactly

The second of the three forms, ’DO WHI LE (ej.); ’, is the first statement of 
an un i ndexed i tera t i ye group. Execution of the group begins with a wh i_l_e test. 
The expression el is evaluated and must yield a bit-string value. If all of the 
bits are zero bits, then execution is complete; otherwise, the statements in the 
group are executed and another execution of the group begins (with another whLie. 
test).

The third of the three forms, DO target = ... , is the first statement of 
an i ndexed i terat i ve group. The statement provides an index, specified by 
target/ that is used to control the repeated execution of the statements in the 
group. As the second syntax diagram shows, there are three ways to control the 
index; their interpretation is not given here. See the section on ’’Program 
Flow”.
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END

END [id

Th is statement is 
procedure. The optional 
recommended. See the 
’’Procedure Invocation”.

the last statement of a group, a BEGIN block, or a 
identifier i d is a closure 1abel; its use is not 
sections on "Program Syntax”, "Program Flow", and

where

• The statement must be immediately contained in a procedure.

• The statement must begin with at least one label prefix; however, no 
label prefix can have a subscript.

• If there are no parameters, the parameter list ’( j_d, ... )’ can 
either be omitted or written as ’()’.

• Each identifier in the parameter list must be a level-one variable 
name declared in the immediately containing procedure.

• The number of parameters in the parameter list must equal the number 
of arguments in the argument list of the CALL statement or function 
reference that invoked this entry.

• The RETURNS attribute must be omitted or must appear depending on 
whether the entry is invoked by a CALL statement or a function 
reference.

• decl is the declaration of the value that is returned by the procedure 
when it is invoked at this entry.

The statement provides an additional entry to a procedure. The entry can 
differ from other entries in its position within the procedure, in its parameter 
list, and in its RETURN attribute. Thus, one procedure can be invoked in 
several different ways if ENTRY statements appear in the procedure.
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FORMAT

FORMAT ( format"list ) ;

where the statement must be preceded by at least one label-prefix and

where n. is an unsigned integer and the format- i terns are as follows:

A( w)
B(w)
F(w,fw, dm)
E(w, fw, ms)
C(parti/pa r 12 ) 
P”x”
X(e) 
COLUMN(e) 
SKIP(e) 
LINE(e) 
PAGE
R(ref)

-- transmit a character-string value rep resentation
-- transmit a bit-string value rep resentation
-- transmit a fixed-point value representation
-- transmit a floating-point value representation
-- transmit a complex value representation
-- transmit a pictured value rep resentation
-- skip e. character positions
-- skip to column e of a line
-- skip e 1i nes
-- skip to line e. of a page
-- skip to the next page
-- invoke another format-list for the next format-item

In these format items, w (width) is the number of characters in an input or 
output field, fw (fraction width) is the number of fractional digits in.the 
value representation, dm (decimal multiplier) is a power of ten, ms. (mantissa 
significance) is the number of digits in the mantissa of a floating-point value 
representation, parfl and par12 can each be any F, E, or P format item, x must 
be a PL/I picture, e. is an arithmetic expression, and ref is a format-va1ued 
reference. Some of the arguments of format-items can be omitted and default 
values are then assumed.

The statement supplies a format-list for use in an edit-directed stream 
input/output statement. The format-list provides a format item for each value 
transmitted and also provides format items to skip spaces, lines, and pages 
between value representations. See the section on ’’Stream Input/Output”.
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FREE

IN(ref2)

The option is selected as follows:

PL/I requires the option for a based variable allocated in an area.

The IN option must be omitted 
control led variable.

if the storage be i ng freed i s a

The IN option must be omi tted i f the storage being freed i s a based
variable that

The IN option

is allocated in system 

can be omitted in any

storage.

case in GCOS PL/I; but Standard

The statement frees
See the section on "Storage

the control led or 
Management".

based variable designated by ref 1.
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GET

and where

• The data-ref is a simple or unsubscripted structure-qua1ified variable 
refe rence.

• The format-list is defined under the FORMAT statement in this 
append i x.

• The multi ple-do is defined under the DO statement in this appendix.

The options are selected as follows:

• The FILE and STRING options can be omitted. In this case, FILE(SYSIN) 
i s assumed.

• The COPY option can be omitted. In this case, no copy of the input is 
made.

• The parenthesized argument 1 (ref2) 1 in the COPY option can be omitted. 
In this case, COPY(SYSPRI NT) is assumed.

» Either the SKIP option or the input option (but not both) can be 
omitted. In this case, the corresponding skip or input is not 
pe rfo rmed.
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The parenthesized argument 1(.el)’ in the SKIP option can be omitted. 
In this case, SKIP(l) is assumed.

The list of input items ’( data-ref, ...)’ can be omitted from the 
DATA input option. In this case, a list of input items including 
every level-one variable accessible from the GET statement is assumed. 
This variation is expensive, and should not be used without due 
consideration of the cost.

The options can be given in any order, but the order shown above is recommended.

The statement reads value representations from a stream data set and 
assigns their values to program variables. See the section on "Stream 
I nput/Output".

GOTO

The statement transfers control to the statement specified by the value of 
ref. See the section on "Program Flow".
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I F

IF e THEN exl [ELSE ex2 1

where exl and ex2 are executab 1e uni ts. An executable unit is defined as

a group (a DO statement, other statements, and an END)
a beg i n-b 1ock (a BEGIN statement, other statements, and an END) 
an i ndependent statement (any statement which acts alone).

An independent statement is any statement except the following:

declarat i ve statements: DECLARE and DEFAULT
dependent statements: FORMAT,DO,BEG IN,PROCEDURE,ENTRY,END.

The ELSE ex2 clause can be omitted, giving a statement of the form

IF e THEN exl

The statement evaluates e. to produce a bit-string value. If the bit-string 
value contains a 1 anywhere (and therefore represents "true"), then exl is 
executed and ex2 is skipped. If the bit-string contains only 0 bits, then exl 
is skipped and ex2 is executed. If the ELSE clause is omitted, then no action 
is performed when the bit-string contains only 0 bits.

LOCATE

LOCATE id $ET(refl) FlLE(ref2) KEYFROM(e) ;

The options can be omitted as follows:

The SET option can be 
as BASED(5_), where £ 
assumed.

omitted provided that id 
is a locator qualifier.

is declared (elsewhere)
In this case, SET(q.) is

The FILE option cannot be omitted.

The KEYFROM option must be omitted if the file 
not have the KEYED attribute.

designated by refl does

The options can be given in any order, but the order shown above is recommended.

The statement allocates storage for the based variable i d and sets the 
locator variable specified by ref1. The allocated storage serves as a buffer, 
and values can be assigned to it by subsequent statements. Then, when the next 
output statement is encountered (or the file is closed), the contents of the 
buffer are output. Output is directed to the file designated by ref2 using the 
key given by e. (if the KEYFROM option occurs). See the section on "Record 
I nput/Output".
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NULL

The statement does nothing. It can be used where an executable-un i t is 
called for, as in the IF and ON statements. See the sections on ’’Program Flow” 
and ’’Condition Handling".

ON

ON SNAP ON un i t ;

where cr is a condition reference and ON unit is

a BEGIN block 
a statement 
the keyword SYSTEM

If the ON unit is a BEGIN block, then a RETURN statement can appear only if it 
is within a procedure within the BEGIN block. If the ON unit is a statement, 
then it must not be any of the following:

declarative statements: DECLARE and DEFAULT.
dependent statements: FORMAT,DO,BEG IN,PROCEDURE,ENTRY,END.
other excluded statements: ON,REVERT,IF,RETURN.

If an ON statement begins with a condition prefix, that prefix applies only to 
the evaluation of the condition name. If the ON unit is a BEGIN block or a 
statement, it can have its own condition prefixes, but it cannot have a label 
pref i x.

The statement establishes the 
when the condition, cn is signalled, 
and their arguments are printed, 
default ON unit for the condition is

ON unit as the action which will be taken 
If SNAP appears, the active block names 
If SYSTEM is used as the ON unit, the PL/I 

i nvoked.
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OPEN

The FILE option cannot be omitted.

The TITLE option can be omitted. In this case, the file code is 
determined from the filename.

The LINESIZE and PAGESIZE options must be omitted unless the file 
description includes OUTPUT PRINT.

The LINESIZE option can be omitted when the file description includes 
OUTPUT PRINT. In this case, LINESI ZE(132) is assumed for most devices 
(including the printer).

The PAGESIZE option can be omitted when the file description includes 
OUTPUT PRINT. In this case, PAGESIZE(55) is assumed for most devices 
(including the printer).

The STREAM and RECORD attributes can be omitted because they can be 
deduced from other attributes given in the file description.

The OUTPUT attribute can be omitted if the file description contains 
the PRINT attribute.

The ENVIRONMENT attribute can be abbreviated to ENV.

The KEYED attribute can be omitted if the file description includes 
the DIRECT attribute.
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The statement supplies information to control the transmission of data 
between a data set and program storage. The information is stored in a 
fj1e-state block designated by the file value supplied by refl in the FILE 
option. The data set to be used is designated by the character-string value 
supplied by el in the TITLE option. The format of a printed page of output is 
specified by integers supplied by e2 and e3. The intended use of the data set 
is specified by the file description. See the sections on ’’Stream Input/Output" 
and "Record Input/Output".

PROCEDURE

RETURNSC decl ) RECURSIVE foPTIONSl MAIN

where

The statement is the first statement of a procedure block.

The statement must begin with at least one label prefix; 
label prefix can have a subscript.

however, no

If there are no parameters, the parameter 
either be omitted or written as ’()’.

list 1( id, ... )’ can

Each identifier in the parameter list must 
declared immediately within the procedure.

be a level-one variable

The number of parameters in the parameter list must equal the number 
of arguments in the argument list of the CALL statement or function 
reference that invoked this entry.

The RETURNS attribute must be omitted or must appear according to how 
the procedure is invoked by a CALL statement or a function reference.

decl is the declaration of the value which is returned by the 
procedure when it is invoked at this entry.

The RECURSIVE keyword must be used 
is recursive. This keyword is 
that all procedures are recursive.

The keyword MAIN identifies the 
con tro 1 .

in Standard PL/I if the procedure 
ignored by GCOS PL/I, which assumes

procedure to which GCOS passes

The order in which the RETURNS and OPTIONS attributes and RECURSIVE keyword are 
given is optional, but the order given above is recommended.

The statement provides the principal entry to a procedure. One or more 
ENTRY statements can be used to provide additional entries to the same 
procedure.
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PUT

output-opt i on is defined as

DATA( put-i tem, ... )

< L I ST ( put-i tem, ... )

< ED IT £ ( put-i tern, ... ) ( format-1i st ) } ... > 

put-item is defined as

P1 )
I ( put-i tern, ... mu 11 i ple-do ) J

and where

• The expression, e3, in a put-i tem for a DATA option is restricted to a 
variable reference.

• The format-list is defined under the FORMAT statement in this 
append i x.

• The mult i ple-do is defined under the DO statement in this appendix.

The options are selected as follows:

• The FILE and STRING options can be omitted. In this case, FILE 
(SYSPRINT) is assumed.

• The SKIP option, PAGE option, LINE option, and ou t pu t-QP t Lon can be 
omitted in any way provided one of them remains. In these cases, the 
cor responding output operation will not occur.

• The parenthesized argument ’(el.)’ in the SKIP option can be omitted. 
In this case, SKIP(l) is assumed.

• The list of output items '( put-i tem, ... )' can be omitted from the 
DATA output option. In this case, a list of output items including 
every level-one variable accessible from the PUT statement is assumed.
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The options can be given in any order, 
is recommended.

but the order shown in the syntax diagram

The statement takes values from program storage (or computes values) and 
writes their representations into a stream data set. See the section on "Stream 
I nput/Output".

REAU

• The KEY option must be omitted if the file is not KEYED or if the 
IGNORE option is used.

• The KEY option cannot be omitted if the file is DIRECT.

• The KEYTO option must be omitted if the file is not KEYED SEQUENTIAL 
or if the IGNORE option is used.

The options can be given in any order, but the order shown above is recommended.

The statement reads a record from a data set or skips records in a 
sequential data set. The data set is specified by the file value given in the 
FILE option. The KEY option gives a character-string value used to locate a 
record. The KEYTO option gives a storage unit suitable for a character-string 
value representing a key. The INTO option provides storage for an input value. 
The SET option provides storage for a pointer to a system buffer into which (if 
this option is used) the record will be read. The IGNORE option gives the 
number of records to be skipped as an integer value. See the section on "Record 
I nput/Output".
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RETURN

RETURN ( e )

The parenthesized expression must appear if the statement returns to a function 
reference, and must be omitted if the statement returns to a procedure call.

The statement terminates execution of a procedure and returns control to 
the function reference or CALL statement that invoked it. See the section on 
’’Procedure Invocation”.

REVERT

REVERT cn, ... ;

where cn must be a condition name.

The statement reverts each condition name provided it was established by an 
ON statement in the current block. See the section on ’’Condition Handling".

REWRITE

REWRITE FlLE(refl) KEY(el) FR0M(ref2) ;

The options are selected as foilows:

• The KEY option must be omitted if the file is not KEYED.

• The KEY option cannot be omitted if the file is DIRECT.

The options can be given in any order, but the order shown above is recommended.

The statement replaces a record in a data set. The record to be replaced 
is specified by the file value given by the FILE option and the character-string 
value given by the KEY option. The new value for the record is supplied by the 
reference in the FROM option. See the section on "Record Input/Output".
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SIGNAL

SIGNAL cr ;

where cr must be a condition reference.

The statement signals the condition designated by cjr. See the section on 
'‘Condition Handling".

WRITE

WRITE FlLE(refl) KEYFROM(e) FRQM(ref2) ;

The options are selected as follows:

• The KEYFROM option must be omitted if the file is not KEYED.

• The KEYFROM option cannot be omitted if the file is DIRECT.

The options can be given in any order, but the order shown above is recommended.

The statement adds a record to a data set. The destination of the record 
is specified by the file value given by the FILE option and the character-string 
value given by the KEYFROM option (if present). The value for the record is 
supplied by the reference in the FROM option. See the section on "Record 
Input/Output".
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of storage unit 3-10

data sets
record 15-1
stream 14-1

data types
addresses 3-45 
areas 3-47 
a r i thmet i c 3-5 
complete attribute sets 6-21 
conversion of 4-1 
ordinary strings 3-16 
pictured strings 3-20 
role of 3-2

data-directed input/output 14-14

DATE function 9-70

DB indicator 3-33

debit indicator 3-33

DECAT function 9-36

DECIMAL
att r i bute 3-6 
function 9-62

decimal-point indicator 3-32

decl a rat i on
abbreviations and defaults 6-6 
ambiguous 6-19 
appli cab i1i ty 6-17 
clause of 6-5 
combined declarations 6-6 
contextual 6-10 
establishment of 6-1 
factored declaration 6-6 
implicit 6-10 
of built-in function names 6-23 
of condition names 13-7, 6-23 
of constant names 6-22 
of entry names 6-8 
of format names 6-9 
of generic names 6-23 
of label names 6-8 
of variable names 6-21 
resolution of names 6-15 
short forms of 6-6 
structure declarations 6-5
6-1

declarat i ons 
simple declarations 6-4
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DECLARE statement
sequential execution of 11-2 
syntax diagram A-8
6-4

DECLARE^STATEMENT 
guidelines for 6-7

DEFAULT statement 
sequential execution of 11-2 
syntax diagram A-9
6- 13

DEFINED variables 
attribute 7-10 
gu i del i nes for 7-36
7- 29

DELETE statement 
for SEQUENTIAL input/output 15-13 
syntax diagram A-9 

DELETE statement for KEYED 
input/output 15-10 

descr i ptors 
for returned result 12-19 

designator of storage unit 3-2 

destination of GOTO statement 11-18 

digit indicator 3-22 

digits 5-2 

DIMENSION attribute 3-54 

DIMENSION function 9-53 

dimensionality of array 3-54 

DIRECT attribute 15-7 

direct recursion 12-29 

DIVIDE function 9-10 

division operator 9-8 

DO control 
FORTRAN 11-13 
index of 11-15 
REPEAT 11-12 
single value 11-11

DO group 
as consequence of IF 11-6 
as executable unit 11-4 
as program structure 5-17 
body of 11-9 
index of 11-15 
iterative with index 11-10 
iterative without index 11-9 
non-iterative 11-16
11-8

DO statement 
syntax diagram A-10

dollar indicator 3-34 

DOT function 9-55 

double precision 3-7 

drifting-dol1 ar indicator 3-37 

drifting-sign indicator 3-36 

e (mathematical quantity) 9-21 

E format i tern 14-31 

E indicator 3-41 

edit-directed input/output 14-25 

elementary arithmetic operations 9-5 

elements of arrays 3-53 

ELSE clause 11-3, 11-7 

EMPTY function 9-52 

enabling conditions
for debugging 13-18

END statement 
as procedure exit 12-11 
syntax diagram A-ll
12-22

end-around repetitions 14-41

ENDFILE cond i t i on 
for stream input/output 14-45

ENDPAGE condition 14-46

ENTRY
attribute 3-45 
constant names 

declaration of 8-39 
8-37

entry declaration 12-23

entry names
gener i c 12-28 

entry points 
in a non-PL/l procedure 12-24 
in another external procedure 12-23 
in same external procedure 12-23

entry reference 
constant 12-23 
interpretation of 12-10 
12-23

entry references 
function 12-27 
variable 12-25
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ENTRY statement 
syntax diagram A-ll
12-21

ENVIRONMENT attribute 15-7

ENVIRONMENT attribute interactive 
st reams
descr i pt i on of 14-9 

equivalenced BASED variables 7-25

EXTERNAL scope 
attribute 7-10
7-14

F format item 14-29

F indicator
fixed-point 3-40
fl oat i ng-po i nt 3-42

factored declarations 6-6

ERF function 9-30

ERFC function 9-30

ERROR condition 13-21

error function 9-30

established On unit 13-14

establishing ON units 13-10

establishment of declarations 6-1

executable unit 11-4

exit from block 11-16

EXP function 9-21

fal se va 1 ue 2-3

fata 1 cond i t i ons 13-14

field in stream 14-27

att r i bute 3-45 
constant references 8-40 
refe rences

in condition references 
to record files 15-4

values 2-4

13-6

file code 14-5, 15-4

file desc r i pt i ons 
for record files 
for streams 14-9

exponent
of FLOAT value 3-6

exponentiation operator 9-9

express i ons 
aggregate 8-5 
infix 8-53 
nested 8-2 
operator expressions 
parenthesized 8-3 
prefix 8-53 
priority of -operators 
8-1

8-52

8-54

extent functions 9-52 

extents
eva1uat i on of 7-5
for areas 3-47
for arrays 3-55
for AUTOMATIC variables 7-16
for BASED variables 7-23
for CONTROLLED variables 7-19
for DEFINED variables 7-29
for PARAMETER variables 7-20
for st r i ngs 3-16
or STATIC variables 7-17

external ENTRY constant names 
declaration of 8-39

external procedures 5-20

external regions 7-4

file name 14-5, 15-4

FILE option
in CLOSE statement 14-9, 15-8
in DELETE statement 15-10, 15-13
in GET statement 14-11
in LOCATE statement 15-20
in OPEN statement 14-8, 15-6
in PUT statement 14-12
in READ statement 15-10, 15-12, 

15-15
in REWRITE statement 15-11, 15-13 
in WRITE statement 15-12, 15-8 
WRITE statement 15-8

f i1e-state blocks
for record files 15-3
for streams 14-5

files
refe rences

for stream input/output 14-6

filler zeros ‘3-8

FINISH condition 13-21

F I XED
att r i bute 3-5
function 9-59

fixed-point format items 14-29

fixed-point PICTURE attributes 3-22
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FIXEDOVERFLOW condition
for arithmetic target 4-8
for conversion 4-20

FLOAT
attribute 3-5
function 9-60

floating-point format items 14-31

floating-point indicator 3-41

floating-point PICTURE attributes
3-22

floating-point values 3-6

FLOOR function 9-12

flow of control 
guidelines for 11-19 
summary of 1-4
11-1

FORMAT
attribute 3-45

FORMAT constant names 8-37 

format lists 14-41

FORMAT statement
in general recursion 
sequential execution 
syntax diagram A-12
14-13

FORTRAN control for DO

12-42
of 11-2

11-13

FREE statement
for BASED variables 7-22
for CONTROLLED variables 7-18 
syntax diagram A-13

FROM option
in REWRITE statement 15-11, 15-13 
in WRITE statement 15-8, 15-12 
omission of 15-19

fully-qualified reference 6-17

function references
interpretation of 12-15
result 12-16
12-14

GCOS files 15-2

GCOS PL/I User’s Guide

genera 1
recursion 12-36 

generic entry names 12-28

generic names
attributes for 6-23

GET statement
syntax diagram A-14
14-11

GOTO statement
as procedure exit 12-11, 12-15 
destination of 11-16
in general recursion 12-44 
local attribute for 11-17 
syntax diagram A-15
11-16  

gu i deli nes
for ^INCLUDE macros 5-9
for abbreviations and defaults 3-8
for aggregates 3-60
for arguments 12-8
for arithmetic constants 8-34
for arithmetic data 3-14
for assignment statements 10-8
for built-in functions 8-50
for cond i t i ons

for conversion 4-22
for contextual declarations 6-11
for conversion functions 9-68
for data-directed input/output 

14-19
for DECLARE statements 6-7
for DEFAULT statements 6-15
for edit-directed input/output 

14-42
for flow af control 11-19
for i dent i f i e rs 5-4
for implicity declarations 6-11
for LIKE attribute 6-13
for 1ist-directed input/output 

14-24
for pictured strings 3-44
for programmed functions 8-50
for programs 5-20
for storage class 7-32
for string data 3-19
for structures 3-50
for studying PL/I 1-12
for subscript list deletion 8-28
for variable references 8-31

gu i de 1i nes for 
scope attributes 7-14 
condition handling 13-18

HBOUND function 9-53

HIGH function 9-47 

hyperbolic functions 9-28

i dent i f i e rs 
as lexemes 5-3 
gu i deli nes for 5-4 
maximum length of 5-3

IF statement 
consequences of 11-4 
dangling ELSE in 11-7 
syntax diagram A-16 
test in 11-4 
within IF statement 11-6
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IF statement (cont)
11-3

I MAG 
function 9-18 
pseudo-variab1e 10-9

imaginary outer block 6-4

imaginary part 10-9, 3-5

immediate containment 
definition of 6-3

implicit declaration 6-10

i mpli ci t targets 4-4

IN option 7-22

INCLUDE macros 5-7

inclusive-or operator 9-41

increment of DO group 11-13

independent statements 
as executable unit 11-5

INDEX function 9-34

index of DO group 11-10

infix operators 8-53

infix sign operators 9-6

INITIAL attribute 
evaluation of 7-6 
7-10, 7-36

initia 1ization of DO group 11-13

INPUT a 11 r i bu te 
for record files 15-7 
for streams 14-9

i npu t/ou tpu t 
condi tons 13-5 
summary of 1-5

insertion-character indicator 3-38

i n teger s 
implicit integer targets 4-5

internal regions 7-4

INTERNAL scope 
attribute 7-10 
7-13

INTO option 
in READ statement 15-10, 15-12

isub DEFINED variables 7-31

i subs 
as lexemes 5-7 
restr i ct i on of 12-3

iterated format lists 14-41

i terati ve DO group 
with i ndex 11-10 
wi thout i ndex 11-9

K indicator 3-41

KEY option
in DELETE statement 15-10
in READ statement 15-10, 15-15 
in REWRITE statement 15-11

KEYED attribute 15-7

KEYED record input/output 15-8

KEYFROM option
in LOCATE statement 15-20
in WRITE statement 15-8

KEYTO option
in READ statement 15-15

keywords 
in statements 5-14 
versus names 5-3

LABEL 
attr i bu te 3-45

LABEL constant names 8-37

label pref i x 
for DO statement 11-9 
for END statement 11-9 
purpose of 5-13
to declare a name 6-8

1anguage-defined conditions 
references 13-6
13-2

layout conventions 11-20

LBOUND function 9-53

left-adjusted string 14-29

left-major order of arrays 3-57

LENGTH function 9-40

length of string 2-2, 3-16, 9-40

letters 5-2

level numbers 3-49

level references 8-16

level-one variable 3-49
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lexemes
^INCLUDE macros 5-7 
classification of 5-12 
i dent i f i e r s 5-3 
i subs 5-7 
literal constants 5-5 
operators 5-6 
pi ctures 5-7 
punctuators 5-6 
separators 5-10
5-2

logical operators 9-41

LOW func t ion 9-4 7

macro names 5-7

major names 8-8

major types 10-2

major variable 3-49 

LI KE attribute 6-11

limit of DO group 11-13

LINE format item 14-39

1i ne number 14-5

LINE option
in PUT statement 14-12

line size 14-5

1i nemar k 14-1

LINENO function 9-70

LIST option
in GET statement 14-11
in PUT statement 14-12

list-directed input/output 14-20

1i tera1 constants 
as lexemes 5-5

LOCAL attribute 11-17

local transfer of control 11-17

LOCATE statement
syntax diagram A-16
15-20

location of variables 8-10

1 oca tor 
attributes 3-45 
values 2-4

locator qualifiers 8-22

management class 7-10

mantissa of FLOAT value 3-6z 3-7

manuals on PL/I 1-12

mathematical operations 9-19

MAX function 9-11

maximum length of string 3-16

member references 8-16

members of structures 3-49

MIN funct ion 9-11

MOD function 9-14

mode attr i butes
for pictured storage 3-23 
guidelines for choice of 3-14 
3-5

multi-valued functions 9-20

multiplication operator 9-7

MULTIPLY function 9-10

NAME condition 14-46

name-sequence
for declaration 6-16
for name reference 6-17

names
cor respondence with storage 7-14 
deletion of 8-28
versus keywords 5-3

1 oca tor-qua 1ified variable reference
1 oca tor-qua1ified deletion 8-30

locator-qualified variable references
8-21

locator-quali fiers 
deletion of 8-30

natural logarithms 9-21

nested expressions 8-2

nesting
of blocks and groups 5-17 
of DO statements 11-16 
of IF statements 11-6

LOG function 9-22

LOGIC function 9-22

next record indicator 
initialization of 15-6 
15—2Z 15-4

LOG2 function 9-22 no-suppression digit indicator 3-30
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non-computational values 2-5 

non-iterative DO group 11-6, 11-16 

non-local transfer of control 11-17 

non-numeric indicator 3-43 

non-numeric PICTURE attributes 3-22 

nonstandard operations 9-3 

NONVARYING 
attribute 3-17

normalized bounds of an array 3-56 

normalized structure levels 3-51 

not operator 9-41 

NULL function 9-50 

nu11 record 15-2 

null statemen t
in IF s tatement 11-8 
syntax diagram A-17

NULLO function 9-50

number system 3-6

number-of-digits in precision 3-7 

numeric PICTURE attributes 3-22 

occupation record 3-47 

occurrence of conditions 13-12 

OFFSET
attribute 3-45 
function 9-65 
va1ues 2-4

ON statement 
syntax diagram A-17
13-11

ON units 
defauIts 13-15 
establishing and reverting 13-10 
for file communication 13-19 
in general recursion 12-43 
res frictions 13-14
13-14

ONCHAR 
function 9-76 
pseudo-variable 10-13

ONCODE function 9-74

ONFIELD function 9-75

ONFILE function 9-77

ONKEY function 
use of 15-21
9-75

ONLOC function 9-74

ONSOURCE 
functi on 9-76 
pseudo-variable 10-13

OPEN statement 
for record files 15-6 
for stream files 14-8 
syntax diagram A-18 

operands 8-53 

ope ra t i on s 
conventions for 

mathematical operations 9-19 
string operations 9-30 
9-3 

conventions for arithmetic 
operations 9-4 

general rules 9-2 
kinds of 

address 9-48 
AREA 9-48 
ar i thme tic 9-3 
array 9-52 
conversion 9-55 
ma themat i ca1 9-19
str i ngs 9-30 
system variable 9-69 

nonstandard 9-3 
summary of 1-4 
9-1 

operator expressions 8-52 

ope ra tor s 
as lexemes 5-6 
classification of 5-6 

optimization of expression evaluation
8-5

options
general form 5-14

OPTIONS attribute 12-20, 12-24

or operator 9-41 

order of expression evaluation 8-5

ordinary external regions 7-4

OUTPUT attribute
for record files 15-7
for streams 14-9

OVERFLOW condition 
for arithmetic target 4-8 
for conversion 4-21

overlapping string targets 10-5
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P format i tem 14-34 

padding for strings 3-17, 9-31

PAGE format i tem 14-39

PAGE option 
in PUT statement 14-12

page size 14-5

pagemark 14-1

PAGENO 
func t ion 9-70 
pseudo-variab1e 10-12

PARAMETER variables 
attribute 7-10 
gu i de 1i nes for 7-34 
7-20

parame ter s 
asterisk extent 
res frictions on
12-19  

12-7
12-19

parent designator 12-39, 12-40 

parenthesized expressions 8-3 

parenthesized iterated list 14-22 

partial BASED variables 7-28 

partially-qualified reference 6-18 

passing arguments 12-2 

permanent internal regions 7-4

phase of iterative DO 11-11

PICTURE
attr i bute 

complex 3-42 
fixed-point 3-22, 3-26, 3-29 
floating-point 3-22, 3-27, 3-41 
non-numeric 3-22, 3-43 
numer i c 3-2 2 
3-21

classification of pictures 3-22 
guidelines for 3-44 
i nd i ca tor s

arithmetic decimal point 3-39 
decima 1-point 3-32 
digit 3-22 
dollar 3-34
drifting-dol1 ar 3-37 
dr i ft i ng-s i gn 3-36 
floating-point 3-41 
insertion characters 3-38 
no-suppression digit 3-30 
non-numer i c 3-43 
seale-factor 

fixed-point 3-40 
f1 oat i ng-po i nt 3-42

sign 3-33

PICTURE (cont)
indicators

zero-suppression 3-35
3-21

lexemes 5-7
s torage

arithmetic assignments 3-27 
arithmetic fetches 3-28
character-string assignments 3-25 
character-string fetches 3-26 
interpretation of 3-23 
3-20 

values
ar i thme tic 3-26
character strings 3-24
2-3

picture format item 
character 14-37 
f i xed-po i n t 14-35 
floating-point 14-37 
use of 3-44
14-34

PL/I Language Manual 1-14

POINTER 
attr i bute 3-45 
func t i on

standard 9-65
in recursion 12-37 
values 2-4

POSITION attribute 7-10, 7-31

power operator 9-9

precedence for operators 8-54

PRECISION
attribute 3-7
guidelines for choice of 3-15

PRECISION function 9-63

prefix of statement 
condition prefix 13-8 
procedure statement 12-18
5-13  

prefix operators 8-53

prefix sign operators 9-6

PRINT attribute 14-9

priority for operators 8-54

PROCEDURE block 
as program structure 
external 5-20 
in general recursion 
sequential execution

PROCEDURE statement 
prefix of 12-18 
sequential execution 
syntax diagram A-19

5-18

12-41
of 11-2

of 11-2
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PROCEDURE statement (cont)
12-17  

procedures
activation 12-10
deactivation of 12-12 
execution 12-11
exit from 12-11, 12-15 
recursive 12-20, 12-29
12-1,  12-17

PROD function 9-54 

product operator 9-7

program
guide!i nes for 5-20
layout conventions 11-20
structure of 1-3, 5-17
syntax 5-1
validity 1-9
5-20

program flow 11-1

programmed function references 8-42

programmer-defined conditions
references 13-7
13-6

promotion of aggregates 4-18

pseudo-var i ab1e
in DO statement 11-15 

pseudo-var i ab1es
in input/output statements 
interpretation of 10-9 
list of 10-4

14-23

punctuators 
as lexemes 5-6

PUT statement
syntax diagram A-20
14-12

record input/output (cont) 
conditions for 15-20 
data sets 15-1 
files 15-3 
keyed 15-8 
opening files 15-6 
operations 15-5 
sequenti al 15-12
15-1

recurs i on 
activation indexes in 12-37 
activation variable reference 12-40 
BEGIN block 12-42 
chained 12-34 
FORMAT statement 12-42 
general 12-36 
GOTO statement 12-44 
ON uni ts 12-43 
parent designators 12-39, 12-40 
pointers in 12-37 
PROCEDURE block 12-41 
statement address constant

reference 12-40 
surface 12-30 
with arguments 12-33 
without arguments 12-31 
12-29

RECURSIVE keyword 12-20

recursive procedures 12-20

REFER option 7-24

reference 
built-in function reference 8-45 
destination of GOTO

restr i c t i on 11-18 
11-16

1 oca tor-qua 1ified 8-21
programmed function reference 8-42 
shortened references 8-27 
simple 8-9
structure-qua1ified 8-16 
subscr i pted 8-12 
to variable 8-8

R format itern 14-13

READ statement
for KEYED input/output 15-10
for SEQUENTIAL input/output 15-12 
syntax diagram A-21

references
constant 8-36

related arithmetic types 3-26

related character types 3-24

REAL
attribute 3-5, 3-23 
function 9-18, 9-58 
pseudo-variab1e 10-9 
values 2-1

real part 10-9, 3-5

RECORD condition 15-23

record input/output 
based 15-14
closing files 15-6

relational operators 
for address values 9-48 
for arithmetic values 9-10
9-38

remote format item 14-13

remote format items 14-41

REPEAT control for DO 11-12

repli ca to r s 
in picture 3-21
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replicators (cont)
in INITIAL attribute 7-36 
in string constants 8-34

resolution of names 
rules for 6-18
6-15

RETURN statement 
as procedure exit 12-11, 12-15 
assumed 11-2 
syntax diagram A-22
12- 22

RETURNS attribute 12-19

REVERSE function 9-40

REVERT statement 
syntax diagram A-22
13- 12 

reverting ON units 13-10

REWRITE statement 
for KEYED input/output 
syntax diagram A-22

15-11

right-hand-side expression 10-4

ROUND function 9-13

roundi ng 
for conversion 4-8 
for pictured strings

S indicator 
drifting 3-36 
leftmost 3-33

seal ars
va1ues 2-5

scale attr i butes
guidelines for choice of 3-15 
3-5

scale-factor in precision 3-8

scale-factor indicator
fixed-point 3-40
floating-point 3-42

scope
gu i de 1i nes for 7-14
of condition prefix 13-8

scope attributes 6-22

scope of block 5-18

SCOPES 7-13

SEARCH function 9-43

self-describing structures 15-18

separation rules 5-10

separator lexemes 5-10

SEQUENTIAL attribute 15-7

sequential execution 11-2

SET option 
in LOCATE statement 15-20 
in READ statement 15-15
7-22

s i de effects 8-6

SIGN function 9-17

sign i nd i cator 3-33

s i gn operator s 9-6

sign-manipulation functions 9-16

SIGNAL statement 
syntax diagram A-23
13-13

signalling of condition 13-13

significant digits 3-8

simple BASED variables 7-26

simple declarations 6-4

simple DEFINE variables 7-30

simple variable references 8-9

SIN funct ion 9-24

SI ND func t ion 9-25

single precision 3-7

single-value control for DO 11-11

SINH functi on 9-28

SIZE cond i t i on 
for arithmetic target 4-8 
for conversion 4-20 
for pictured strings 3-31

SIZE funct ion 9-72

SKIP format item 14-39

SKIP opt i on 
in GET statement 14-11

SNAP keyword 13-11

spaces 
as lexemes 5-10 
5-2

special array functions 9-54

special characters 5-2
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special conversion functions 9-65

special string target 10-6

SQRT function 9-23

stack frame
in recu r s i on 12-29
12-10

stacking CONTROLLED variables 7-18

statemen t
address values 2-3
classification of 5-16
parts of

attributes 5-15
body 5-14
clauses 5-14
keywords 5-14
options 5-14
prefix 5-13

statement address constant references 
12-40

STAT IC var i ab1es
attribute 7-10
guidelines for 7-33
7-17

statistical analysis functions 9-29

status indicator 14-5, 15-4

storage 3-1

storage class attributes
guidelines for 7-32
6- 22

storage classes 7-15

STORAGE condition 7-40

storage conditions 13-4

storage management
conditions for 7-39
functions 9-71
fundamental principles 7-3
fundamental prinicples 7-3
operations 7-5
7- 1

storage regi ons
diagrams 7-4

storage types
addresses 3-44
aggregates 3-49
areas 3-46
ar i thmeti c 3-4
conversion of 4-1
of expressions 8-3
ordinary strings 3-16
pictured strings 3-20
3-2

s tor age unit 
box 3-2

storage units
contents 3-2 
data frame 3-10 
designator 3-2 
examples of 3-10, 3-18 
interpretation of 3-11 
storage type 3-3 
3-1

STREAM attribute 14-8

stream input/output 
closing files 14-7 
conditions for 14-44 
data sets 14-1 
data-directed 14-14 
edit-directed 14-25 
files 14-4 
1 i st-d i rected 14-20 
openi ng files 14-7 
operations 14-6 
statements 14-11 
STRING opt i on 14-43
14-1

s tream pointer 
initialization of 14-8
14-5

streams 
input 14-3 
output 14-3 
pseudo 14-4

STRING 
functi on 9-66 
pseudo-variab1e 10-11

string format items 14-28

STRING option 
in GET statement 14-12
14-43

STR I NG opt i ons 
in PUT statement 14-12

string overlay BASED variables 7-27

string overlay DEFINED variables 7-31

string-type attributes 3-16

s tr i ngs 
assignment of 10-2 
attributes 3-16, 3-21 
constant literals 8-34 
constants

as lexemes 5-5
implicit string targets 4-5
operations 9-30
or di nary 3-16
padding 3-17 
pi ctured 3-20 
values 2-2
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STRINGSIZE condition 
for conversion 4-22 
for string target 4-10

system variable operations 9-69

SYSYEM keyword 13-11

structure declarations 6-5

structure-qua1ified variable 
name deletion 8-28

structure-qua1ified variable 
references 8-16

refe rence

structures 
storage 3-51 
storage types 3-50 
values 2-4 
3-49

subscripted variable reference 
subscript-1ist deletion 8-27 

subscripted variable references 8-12

SUBSCRIPTRANGE condition 
in GOTO statement 11-17
8-12

subscr i pts 
deletion of 8-27 
8-12

subsets of PL/I
for business programming 1-7
for scientific programming 1-5
for system programming 1-8

SUBSTR
function 9-33
pseudo-variab1e 10-10

SUBTRACT function 9-10

SUM function 9-54

surface recursion 12-30

switch GOTO statement 11-16

syntactic validity 5-1 

syntax 
general rules 5-1 
of statements 

notation A-l 
A-l

syntax of statements 
conventions A-6 
parts statement A-5

SYSIN stream file 14-10

SYSPRINT stream file 14-10 

system counter functions 9-70

system variable 13-15

TAN function 9-24
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